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Abstract Optical motion capture systems suffer from mark-
er occlusions resulting in loss of useful information. This
paper addresses the problem of real-time joint localisation
of legged skeletons in the presence of such missing data.
The data is assumed to be labelled 3d marker positions from
a motion capture system. An integrated framework is pre-
sented which predicts the occluded marker positions using
a Variable Turn Model within an Unscented Kalman fil-
ter. Inferred information from neighbouring markers is used
as observation states; these constraints are efficient, sim-
ple, and real-time implementable. This work also takes ad-
vantage of the common case that missing markers are still
visible to a single camera, by combining predictions with
under-determined positions, resulting in more accurate pre-
dictions. An Inverse Kinematics technique is then applied
ensuring that the bone lengths remain constant over time;
the system can thereby maintain a continuous data-flow. The
marker and Centre of Rotation (CoR) positions can be cal-
culated with high accuracy even in cases where markers
are occluded for a long period of time. Our methodology is
tested against some of the most popular methods for marker
prediction and the results confirm that our approach outper-
forms these methods in estimating both marker and CoR po-
sitions.
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1 Introduction

Optical motion capture is a technology used to turn the ob-
servations of a moving subject (taken from a number of
cameras) into 3d position and orientation information about
that subject. It is commonly used to better analyse tech-
niques for sports training and performance [28]; for ob-
servation of asymmetries and abnormalities in rehabilita-
tion medicine [9]; in biomechanics labs (prosthetics, er-
gonomics); and for visualisation of virtual characters for
films and computer games [48]. In general, to achieve ac-
curate skeletal reconstruction of any legged body, 3 markers
must be available on each limb segment at all times. How-
ever, even with many cameras, there are instances where oc-
clusion of markers by elements of the scene leads to missing
data. In order to unambiguously establish its position, each
marker must be visible to at least two cameras in each frame.
Although many methods have been developed to handle the
missing marker problem, most of them are not applicable
in real-time, are usually limited to short time period occlu-
sions, and often require manual intervention. Real-time gap
filling is very important in motion capture technology since
the skeleton of the character can be produced simultaneously
with tracking the motion; it is essential, especially in appli-
cations where interaction between the user and the computer
is needed.

This paper investigates methodologies for real-time
marker prediction, under multiple cases of occlusion, to
drive centre of rotation (CoR) estimates, and then to au-
tomatically establish the skeleton model. A real-time inte-
grated framework is presented, which predicts the occluded
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Fig. 1 An overview of the proposed method used to compensate for interruptions caused by occlusions and to drive real-time skeletal parameter-
isations

marker positions using a Variable Turn Model within an
Unscented Kalman filter (UKF). The previous marker po-
sitions are used within the framework in addition to infor-
mation related to the missing markers of the current frame,
inferred from an approximate rigid body assumption. The
predicted marker positions are then used to locate the joints.
Without assuming any skeleton model, we take advantage
of the fact that for markers on a given limb segment, the
inter-marker distance is approximately constant. The pro-
posed marker constraint methodology is simple, real-time
implementable, and very efficient. Our method is automatic
and scalable, without requiring any parameters to be set
by the user. It considers all the cases of marker occlusion
within a limb resulting in accurate predictions even in cases
where all markers on a limb segment are missing for an ex-
tended period of time. The proposed approach is the first
method that takes advantage of the special, but common,
case where missing markers are visible to just one camera,
reducing the marker estimation error significantly. With a
continuous stream of accurate labelled 3d data, we can per-
form real-time CoR estimation; the CoR position is there-
after corrected via a real-time Inverse Kinematic technique
which guarantees that the inter-joint pairwise distances re-
main constant over time. To the best of our knowledge, this
is the first methodology that operates inter-joint constraints,
using real-time Inverse Kinematic techniques, in order to
maintain fixed bone lengths over time in optical motion cap-
ture systems. A skeletal reconstruction is thereby achieved,

producing information which can be used for visual perfor-
mance feedback. Figure 1 shows the outline organisation of
our system. Experiments demonstrate that our methodology
effectively recovers good estimates about the true positions
of the missing markers and CoRs, agreeing with human in-
tuition, even if all the markers on a limb are occluded for a
long period of time. Our work has been tested against some
of the most popular methods for compensating for interrup-
tions caused by marker occlusion and the results confirm
that our method generally outperforms others. The move-
ments produced are smooth and are without abnormalities
or oscillations, resulting in natural reconstructed motion.

2 Related work

Many papers have focused on methods for joint localisa-
tion. Sphere fitting approaches are the most commonly used
methods for calculating the CoR. This group of methods as-
sumes that all markers remain a constant distance from the
centre of rotation. Silaghi et al. in [59] use the Levenberg–
Marquardt method to optimise the CoR location and the
radii of the marker spheres, via a cost function which sums
a per marker cost over all markers and all frames. Halvorsen
et al., in [27], describe a closed form solution using the
geometric properties of the sphere. In [24], Gamage and
Lasenby also introduce a closed form solution, using a cost
function of the squared differences in the squared distance
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from the CoR to a marker and the radius of the sphere asso-
ciated with that marker. An alternative approach provided by
Halvorsen, [26], gives a Bayesian analysis of the algorithm
of [24], providing a first-order approximation of the effect
of isotropic Gaussian noise upon the algorithm.

Another group of methods is that termed Transforma-
tional techniques; they assume that markers are rigidly at-
tached to limb segments. Such an approach was imple-
mented in [33, 51], and [22], where the limb orientation was
obtained from sets of optical markers. In [12], a sequential
algorithm was presented to locate the rotation centres of a
human skeleton from marker data assuming that all markers
are attached to a rigid body. The method is closed form, thus
enabling real-time implementation.

Whilst several methods to estimate the location of the
CoR have been proposed, the performance of most is un-
satisfactory in the presence of unusual motions or of many
contiguous occlusion-affected frames. Indeed, there are in-
stances, even with expensive motion capture systems, where
occlusion of markers by elements of the scene leads to miss-
ing data. While the discarding of frames with missing mark-
ers is a common technique, the omission of specific data
could lead to the loss of useful information. Long-running
occlusions leading to a large sequence of missing data can
also cause complete failure of the system. Several methods
have been proposed to predict the occluded markers in order
to drive CoR estimation and skeletal reconstruction. Inter-
polation of the data using linear or nonlinear approaches is
commonly used [58, 69]; this can produce accurate results,
but it is a post-processing technique requiring data prior to
and after the occlusion. Recently, Piazza et al. in [55] pre-
sented an extrapolation algorithm which assumes that the
most common motion behaviors are circular or linear move-
ments; however, this method can produce reliable predic-
tions only for a limited number of occluded frames.

Rhijn and Mulder, [56], proposed a model-based optical
tracking and model estimation system for composite inter-
action devices; however, it is an off-line procedure unsuit-
able for real-time applications. Dorfmüller in [20] used an
extended Kalman filter (EKF) to predict the missing mark-
ers using previously available marker information, while
Welch et al. in [68] used an EKF to resolve occlusions
based on the skeletal model of the tracked person. Maidi
et al. in [47] prevent intermittent tracking by taking mea-
surements from an optical flow method to supply a hybrid
approach based on Kalman filtering. For this reason, an ad-
ditional marker is introduced for the optical flow tracker;
nevertheless, it is impossible to track the object and maintain
virtual graphics overlaying when both markers are not iden-
tified. Tak and Ko, [63], employed an Unscented Kalman
Filter to ensure that the motion capture data remains in a
feasible set. However, these methods require manual inter-
vention or become ineffective in cases where markers are

missing for an extended period of time. Aristidou et al. [1]
also presents an EKF method using a constant velocity (CV)
model with marker constraints from neighbouring1 markers.
However, the CV model limits its use to problems with con-
stant marker velocity. These methods also do not take into
consideration the fact that bones are rigid, thus the inter-joint
pairwise distances should remain constant over time. Li et
al. [41] propose DynaMMo, an approach that uses a Linear
Dynamical System (LDS) to model motion capture data un-
der sequences with missing values; in [42], the same authors
introduce BoLeRo, a similar technique which also takes into
consideration bone length constraints. The suggested algo-
rithm has a ‘hard’ and ‘soft’ version of bone constraints as-
suming rigidity limitations of the distance between markers
on a given segment limb. Although their algorithm results
in smooth motion, the method is complex and expensive in
terms of computational cost.

Herda et al., in [30] and [31], used a post-processing
approach to increase the robustness of a motion capture
system by using a sophisticated human model. The neigh-
bouring markers that share kinematic relations with the oc-
cluded markers were used to help the estimation of the miss-
ing markers. However, the skeleton information must be
known a priori in order to apply this method. Hornung and
Sar-Dessai, [35], also developed a system to compensate
for interruptions caused by occlusions by performing con-
stant inter-distance signatures between neighbouring mark-
ers. Nevertheless, this approach may become ineffective
when all or a significant number of markers are missing
so that no information on that limb can be inferred from
the available LEDs. Ringer and Lasenby, [57], also present
an automatic method to identify indistinguishable markers
based on cliques.2 However, this requires an off-line proce-
dure in order to determine marker cliques and parameters
of the skeletal structure. Zordan and Van Der Horst in [72]
mapped 3D marker position data to joint trajectories for a
fixed limb-length skeleton, by attaching virtual springs and
controllers, to follow their Cartesian positions. In general,
these skeleton methods could work well for short time oc-
clusions but fail to track the missing markers for large oc-
cluded sequences.

In [25], a style-based inverse kinematic method has been
developed where a Gaussian Process Latent Variable Model
(GPLVM) was used along with a pre-specified kinematic
model. Wang et al., [66], presented a Gaussian process dy-
namical model (GPDM) in order to learn the human pose
and motion models. They observed the motion using a chain
of latent variables and nonlinear mapping from the latent
space; the proposed learned model was also able to cope

1Neighbours are the markers belonging to the same limb segment.
2Markers in a clique have constant distances between each other.
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with marker occlusions. Although these are real-time pro-
cessing methods, they require knowledge of skeleton infor-
mation which severely restricts their use. Chai and Hod-
gins, [13], present a method that uses the neighbouring
markers to estimate the missing marker in the current frame.
They propose a local linear model from these neighbours
and then reconstruct the full pose of the frame by conducting
an optimisation in the space constrained by a pre-recorded
database. Yu et al., [71], proposed an online motion capture
labelling approach which also recovers missing markers.
They cluster the markers into a number of rigid bodies based
on the standard deviations of the marker-pair distances and
if their fitting-rigid-bodies algorithm did not classify all the
markers into rigid bodies, a missing marker auto-recovery
method is applied assuming that the inter-marker distances
are fixed over time. However, a training session is needed,
the auto-recovery method for marker estimation does not
take into account the limb segment rotation, no information
about markers visible to a single camera is considered and
the CoR estimation is not investigated under marker occlu-
sions.

Park and Hodgins, [52], fill the missing data by learn-
ing a statistical model of the spatial relationship between
each marker and its neighbours; they use a Principal Com-
ponent Analysis (PCA) on each marker position and its
neighbours throughout the entire motion. In [64], the au-
thors modelled the human motion and filled the gaps in
the data using a Conditional Restricted Boltzmann Machine
(CRMB) with discrete hidden states. Their approach was
trained using non-linear binary representations, conditioned
on previous frames; at the same time, they took into con-
sideration the correlation between joint angles, to produce
more accurate results. Liu et al., [45, 46], presented a piece-
wise linear approach for estimating human motions from
a pre-selected set of informative markers (principal mark-
ers). A pre-trained classifier identifies an appropriate local
linear model for each frame. Missing markers are then re-
covered using available marker positions and the principal
components of the associated model. In [36], the data were
mapped onto a target motion by searching over patterns in
existing databases. Recently, Courty and Cuzol in [16] pre-
sented an optimal data interpolation method through condi-
tional stochastic simulation for automatic motion comple-
tion. However, this data-driven family of methods requires
an off-line training procedure and the results are highly de-
pendent on training data and limited to those models and
movements the system has been trained on.

In this work, we prevent intermittent tracking using a
UKF model which uses the velocity and acceleration de-
rived from marker positions as the observation sequence, in
addition to a constant rotation model. Inferred information
from neighbouring markers has been utilised for a better ap-
proximation of the marker estimates. Having a continuous

flow of data, we can drive real-time skeletal parameterisa-
tion. The CoR positions are thereafter corrected using an
adapted version of the FABRIK Inverse Kinematics solver,
which uses an inter-joint constant distance signature. So far,
no existing method operates such bone length constraints to
prevent rigid body violation. There are, however, methods
where the chosen skeletal parameterisation is composed of
rotations, thus no inter-joint kinematic restrictions are re-
quired [18, 30].

3 Calculating the centre of rotation

During capture, markers must be carefully placed on the
body in order to obtain good results. Results using mark-
ers placed too close to the CoR are more susceptible to er-
rors since a small error may cause large deviations in the
estimated rotation, leading to erroneous calculation of the
model parameters. The data discussed here are labelled from
an active marker system (PhaseSpace [54]) where no track-
ing is necessary. The PhaseSpace impulse system identifies
and tracks individual markers from their unique modulation
and in this paper problems related to marker inversion are
not therefore considered. In general, 3 markers per bone seg-
ment are required to estimate the CoR for joints with 3 De-
grees of Freedom (DoF); for simpler problems having fewer
DoF, such as knees and elbows, the CoR can be calculated
with fewer markers [14]. In this paper, we consider the gen-
eral case of joints with 3 DoF since no prior knowledge of
the model or joint-type is assumed.

Locating the CoRs is a crucial step in acquiring a skele-
ton from raw motion capture data. To calculate the joints be-
tween two sets of markers, it is helpful to have the rotation
of a limb at any given time. We can estimate the orientation
of a limb at time k relative to a reference frame using the
Procrustes formulation [34].

The location of the joints can be calculated using the ap-
proach in [12]. This takes advantage of the approximation
that all markers on a segment are attached to a rigid body.
Suppose the markers are placed on two segments (x and y)
joined by a CoR. Let the CoR location in frame k be Ck . The
vectors from the CoR to markers in the reference frame are
denoted by ai

x and aj
y for limbs x and y, respectively, where

i and j are marker labels. The positions of the markers in
frame k are given by:

xk
i = Ck + Rk

xai
xR̃

k
x yk

j = Ck + Rk
yaj

yR̃
k
y (1)

where Rx and Ry are the rotors (quaternions) expressing the
rotation of the joint limbs x and y, respectively. R̃ is the
quaternion conjugate of R. Let bk

ij be the vector from xk
i to

yk
j , that is

bk
ij = xk

i − yk
j = Rk

xai
xR̃

k
x − Rk

yaj
yR̃

k
y (2)
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Fig. 2 An example of CoR estimation of a human body model us-
ing [12]. (a) The marker positions as returned by the motion capture
system, (b) the calculated CoRs and the skeletal reconstruction

A cost function S can be constructed that has a global
minimum at the correct values of ai

x and aj
y if the data is

noise free, and returns a good estimate in the presence of
moderate noise.

S =
m∑

k=1

nx∑

i=1

ny∑

j=1

[
bk

ij − (
Rk

xai
xR̃

k
x − Rk

yaj
yR̃

k
y

)]2 (3)

where nx , ny are the number of markers on limbs x and
y, respectively, and m is the number of frames used for the
calculations. The minimum is given by the solution of the
simultaneous linear equations, obtainable by differentiation:

ai
x = 1

m

m∑

k=1

R̃k
x b̄kRk

x + 1

m

m∑

k=1

R̃k
xR

k
y āyR̃

k
yR

k
x (4)

aj
y = 1

m

m∑

k=1

R̃k
y b̄kRk

y + 1

m

m∑

k=1

R̃k
yR

k
x āxR̃

k
xR

k
y (5)

where

b̄k = 1

nxny

nx∑

i=1

ny∑

j=1

bk
ij āw = 1

nw

nw∑

i=1

ai
w w = {x, y}

Having calculated the Rk
w and āw , we can locate the CoR.

Figure 2 demonstrates an example of CoR estimation and
skeletal reconstruction in real-time using the above method.
However, due to occlusions, there are instances where not
all marker positions are available. If all markers are avail-
able on one limb segment, w, the CoR may be estimated
using only the current Rk

w and āw as estimated in the pre-
vious frame, when all markers were visible, via (1). If there
are markers occluded on both limb segments, a marker pre-
diction methodology is needed.

4 Marker prediction

The estimates for marker positions can be predicted us-
ing filtering. In this process, each single marker can be
tracked individually and constraints for neighbouring mark-
ers can be incorporated. Most tracking problems require
a dynamic model for accurate estimation of the trajectory
of a maneuverable object. During the last decades, various
mathematical models of target motions have been devel-
oped. Singer [60, 61] proposes a model which assumes that
the target acceleration is a zero-mean first-order stationary
Markov process. Based on Singer’s assumption, many pa-
pers have proposed a constant or variable acceleration model
(e.g. [43]).

The nearly constant turn NCT and constant velocity CV
models are based on a constant-speed condition and constant
turn-rate assumption which restricts the variety of possi-
ble supported maneuvers. Within this work, a Variable Turn
Model (VTM) [5] is implemented which uses the velocity
and acceleration (it is assumed that the target’s velocity and
acceleration are not constant over time) of the tracked object
as state parameters of the Unscented Kalman filter in addi-
tion to rotation updates assuming that the rotation between
two consecutive frames remains constant.

Unscented Kalman filter Kalman filtering has been ex-
tensively used for real time estimation of linear dynamic
systems. However, the traditional Kalman filter [40] is not
suitable for use with non-linear dynamical systems, even if
Gaussian approximations to the joint distribution of state x
and measurement y are made. The Extended Kalman Fil-
ter (EKF) [38] is a minimum mean-square-error (MMSE)
estimator which extends the scope of the Kalman filter to
non-linear optimal filtering problems. It forms a Gaussian
approximation to the joint distribution of state and measure-
ment using a Taylor series-based transformation. Neverthe-
less, EKF implementation is complex (Jacobian and Hessian
matrices with second-order filters are required), difficult to
tune, and only reliable for systems that are almost linear on
the timescale of the updates.

The Unscented Kalman Filter (UKF), [39], propagates
mean and covariance information through nonlinear trans-
formations providing more accurate results than the EKF,
for a similar computational cost. Consider propagating an
nx -dimensional random variable x and assume x has mean
x̄ and covariance Px . First, a set of 2nx +1 weighted samples
or sigma points Si = {Wi, Xi} are deterministically chosen
so that the true mean and covariance of the random vari-
able x can be completely recovered from them. A set of
scaled sigma points S = {W, X } can be calculated by set-
ting:

λ = α2(nx + κ) − nx (6)
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and selecting the sigma point set by

W
(m)
0 = λ/(nx + λ) i = 0

W
(c)
0 = λ/(nx + λ) + (

1 − α2 + β
)

i = 0

W
(m)
i = W

(c)
i = 1/{2(nx + λ)} i = 1, . . . ,2nx

where α is a positive scaling parameter which controls
the size of the sigma point distribution. κ ≥ 0 is also a
scaling parameter and Wi is the weight associated with
the ith point such that

∑2nx

i=0 Wi = 1. Note that the (m)

and (c) superscripts are just used for indexing the weight
Wi . Merwe et al., [49], proposed κ = 0, to guarantee pos-
itive semidefiniteness of the covariance matrix and 0 ≤
α ≤ 1 to avoid sampling non-local effects when the non-
linearities are strong. β ≥ 0 is a weighting term which in-
corporates knowledge of the higher order moments of the
distribution. β = 2 is the optimal choice for a Gaussian
prior.

Let the original state and noise variables at time k be
xα
k = [xT

k vT
k nT

k ]. The sigma point selection scheme is ap-
plied to this augmented state Random Variable (RV) to cal-
culate the corresponding sigma matrix, X α

k . The mean x̄ and
covariance P of the Gaussian approximation is updated to
the posterior distribution of the states as follows:

x̄0 = E[x0]
P0 = E

[
(x0 − x̄0)(x0 − x̄0)

T
]

(7)

x̄α
0 = E

[
xα

] = [
xT

0 0 0
]T

Pα
0 = E

[(
xα

0 − x̄α
0

)(
xα

0 − x̄α
0

)T ] =
⎡

⎣
P0 0 0
1 Q 0
1 0 R

⎤

⎦

For k ∈ {1, . . . ,∞} the sigma points are equal to

X a
k−1 =

[
x̄α
k−1 x̄α

k−1 ±
√

(nα + λ)Pα
k−1

]
(8)

and the time update is given by

X x
k|k−1 = f

(
X x

k−1, X ν
k−1

)

x̄k|k−1 =
2na∑

i=0

W
(m)
i X x

i,k|k−1

Pk|k−1 =
2na∑

i=0

W
(c)
i

[
X x

i,k|k−1 − x̄k|k−1
][

X x
i,k|k−1 − x̄k|k−1

]T

Zk|k−1 = h
(

X x
k|k−1, X n

k−1

)

z̄k|k−1 =
2na∑

i=0

W
(m)
i Z x

i,k|k−1

where f(.) is the transition and h(.) the observation function.
The measurement update equations are:

Pz̃k z̃k
=

2na∑

i=0

W
(c)
i [Zi,k|k−1 − z̄k|k−1][Zi,k|k−1 − z̄k|k−1]T

Pxkzk
=

2na∑

i=0

W
(c)
i [Xi,k|k−1 − x̄k|k−1][Zi,k|k−1 − z̄k|k−1]T

Kk = Pxkyk
P−1

ỹk ỹk

x̄k = x̄k|k−1 + Kk(Zk − z̄k|k−1)

Pk = Pk|k−1 − KkPz̃k z̃k
KT

k

where xα = [xT vT nT ]T , X α = [(X x)T (X ν)T (X n)T ]T , λ

is the composite scaling parameter, nα = nx +nν +nn, Q is
the process noise covariance, R is the measurement noise
covariance, K is the Kalman gain, Wi are the Unscented
Transform weights, and Zk is the observation vector.

The transition function f(.) and the observation function
h(.) are very important for implementing efficient UKF fil-
tering. In this model, the transition function is taken to be a
Variable Turn Model (VTM) with target velocity and accel-
eration the equivalents of the relevant tracked marker. How-
ever, a detailed look at real marker data indicates that the
estimated velocities are invariably noisy. Many factors con-
tribute to marker position noise, such as optical measure-
ment noise, mis-calibration of the optical systems, reflec-
tions, motion of markers relative to the skin and motion of
the skin relative to the rigid body (underlying bone). As a re-
sult, the target acceleration is mostly noisy. One method of
measuring accelerations would be to attach accelerometers
to the markers placed on the limb segments. Such a system,
which synchronises measurements from the accelerometer
and active markers was described and investigated in [6].
While the system shows some promise, we are faced with
dealing with both the noise on the accelerometer readings
and the fact that the reference frame of those readings must
be determined. Given these difficulties, we decided to use
isolated estimates of accelerations obtained from the posi-
tion data. The target velocity was smoothed using a real-time
median filter, thus allowing an adequate calculation of the
acceleration which was therefore straightforwardly applied
in the proposed model.

On the other hand, for the observation function we use a
simple model which assumes that the rotation between two
consecutive frames is constant. Thus, the time update of the
observation state is equal to

Zk|k−1 = Rk−2,k−1 X x
k|k−1R̃

k−2,k−1 (9)

where Rp,q is the rotor for the rotation between frames p

and q , assuming that the rotation of the markers between
two consecutive frames remains constant. It is important at
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this point to recall that the rotation between the previous and
the current frame is re-calculated every frame just after the
marker prediction using the estimated marker positions.

Early numerical implementations using Particle Filter-
ing [21] showed that, although it could improve the per-
formance of our state estimates, this improvement was
marginal compared to the UKF-VTM and, therefore, not
worth the added computational effort.

5 Applying marker constraints

The observation vector, Zj
k , gives the observed position of

the tracked marker j when available, otherwise it represents
estimated position. The state vector represents true position
and velocity as given above. To cope with cases where mark-
ers are missing for long periods of time, a tracker that uses
information from both the previous frames and the current
positions of neighbouring visible markers has been imple-
mented, taking into account the rigidity of the body. As-
suming that there are three markers on each limb and the
inter-marker distance is constant over time, the observa-
tion vector can be updated as given below for 5 different
scenarios. The proposed marker constraints from inferred
neighbouring markers are simple, real-time implementable
and do not assume prior knowledge other than fixed inter-
marker distance (the model is rigid). This assumption is true
in a noise free environment, however, since limb segments
rapidly change direction, there is noise on marker motion
relative to the skin and motion of the skin relative to the
rigid body (underlying bone).

5.1 All markers are visible on a given limb

Where all markers are visible on a given limb, then

Zj
k = Hxk

j + vk
j (10)

where xk
j is the current state of a tracked marker j on the

limb, H is the observation model (in this case the identity)
and vk

j is the observation noise. v is assumed to be zero mean
multivariate normal with covariance R.

5.2 One missing marker on a limb segment

In the case where two markers are visible on the limb,

Z1
k = H x̂k

1 + vk
1 (11)

where x̂k
1 is the estimated position of the occluded marker

m1 in frame k (assuming, in this example, that m1 is
the missing marker). x̂k

1 can be calculated as given below.
Firstly, we calculate Dk−1

1,2 and Dk−1
1,3 which correspond to

Fig. 3 The observation vector in the case of 2 visible markers. The
red dot, x̃k

1, represents the average value as given in (14). The green
dot, x̂k

1, is the point on the intersection of the 2 spheres which is closest
to x̃k

1

the vectors between marker m1 and markers m2, m3 in frame
k − 1, respectively. These vectors are given by

Dk−1
i,j = xk−1

j − xk−1
i (12)

Thereafter, these vectors are rotated as

D̂k
i,j = Rk−2,k−1Dk−1

i,j R̃k−2,k−1 (13)

assuming that the rotation between the current and the previ-
ous frame is the same as that between the previous 2 frames.
Predicting the current rotation using previous rotations of-
fers marginal improvement to the system performance, and
such a small improvement means that it is not worth the ad-
ditional computational cost [4]. One obvious way to proceed
is to calculate the point x̃k

1 which is an average of the esti-

mated positions in frame k using the D̂ vectors:

x̃k
1 = (xk

2 − D̂k
1,2) + (xk

3 − D̂k
1,3)

2
(14)

where xk
i is the position of marker i in frame k. We now

improve on this estimate by finding the solution of the in-
tersection of the two spheres in frame k with centres xk

2, xk
3

and radii |D̂k
1,2| and |D̂k

1,3|, respectively. x̂k
1 is assigned as

the closest point on the circle of intersection to x̃k
1. Figure 3

illustrates this process.

5.3 Two missing markers on a limb segment

In the case of only one marker visible (for example m2) on
a given limb, the observation vector is given as

Zj
k = H x̂k

j + vk
j (15)

where x̂k
j is the estimated position of the occluded marker

mj (j = 1,3) in frame k. x̂k
j is given by

x̂k
j = xk

2 − D̂k
j,2 (16)
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Fig. 4 The observation vector in the case of only one visible marker.
The red dots, x̂k

j , where j = {1,3} represent the estimated position of
the missing marker mj as given in (16)

where xk
2 is the position of the visible marker m2 on the limb

in the current frame and D̂k
j,2 is as described above. This

assumes that there is no marker rotation. Figure 4 demon-
strates the above.

5.4 All markers on a limb segment are missing

When all markers on a limb are occluded, we consider two
possible subcases; the case where the other limb segment
has some markers visible and the case where both limb seg-
ments have all of their markers occluded. If some markers
on the other limb segment are visible (assume the y limb),
the missing marker positions can be calculated using the
CoR estimate, Ĉk = yk

i − Rk
y āyR̃

k
y where i = {1,2,3}. Our

methodology takes advantage of the approach in [12] for
CoR estimation and provides better approximations of the
CoR using information from the adjacent limbs. The obser-
vation vector of the Unscented Kalman filter is then updated
as

Zj
k = H x̂k

j + vk
j (17)

where x̂k
j is the estimated position of the occluded marker

mj (j = 1,2,3) in frame k. x̂k
j is given by

x̂k
j = Ĉk + D̂k

j,c (18)

where D̂k
j,c is an estimate of the vector between marker mj

and the CoR. This approach takes advantage of the fact that
the distance between markers and the CoR is constant. This
vector is approximated by D̂k

j,c = Rk−2,k−1Dk−1
j,c R̃k−2,k−1

where Dk−1
j,c = xk−1

j − Ck−1. This assumes that the rota-
tion of the markers between two consecutive frames remains
constant. Figure 5 illustrates this procedure.

If both limb segments have all markers occluded, only in-
formation from previous frames can be used. The observa-
tion vector, Zj

k , in this instance is calculated using a quater-
nion based method. This method also assumes that the seg-
ment rotation between two consecutive frames is constant.

Fig. 5 The estimation procedure when all markers on a single limb
segment are occluded. The red dots represent the estimated position
of the CoR, Ĉk = yk

i − Rk
y āyR̃k

y where i = {1,2,3}, and the esti-

mated marker positions on limb segment x, x̂k
j = Ĉk + D̂k

j,c , where
j = {1,2,3}. āx and āy are updated using the predicted marker posi-
tions in the current frame

The observation vector can now be expressed as

Zj
k = H x̂k

j + vk
j (19)

where x̂k
1 is equal to x̂k

1 = Rk−2,k−1xk−1
1 R̃k−2,k−1. Assum-

ing that the markers rotate constantly between two consecu-
tive frames, the method performs better than using a simple
variable velocity model since it ensures that markers do not
move independently [4]. Markers on a limb segment move
as a group of three and their inter-marker distance should re-
main constant over time. Note that we must ensure our rotor
R satisfies RR̃ = 1, and if this is not the case, normalisation
must occur.

5.5 Markers visible in only one camera

Each marker can be reconstructed by the motion capture sys-
tem if it is visible in at least two cameras. Indeed, looking at
numerous real datasets, we have observed instances where
the missing markers are not entirely occluded; information
about position is often returned by a single camera. This in-
formation identifies a line, L1, starting from the camera and
passing through the position of the missing marker. By re-
laxing the constraints that the inter-marker distance is con-
stant and accepting that the real position of the marker is on
that line, we may be able to obtain a more accurate estimate
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Fig. 6 The observation vector in the case of 2 visible markers and one
marker visible only by one camera. The red dot, x́k

1, is now used for the
calculation of the observation vector, Z1

k = H x́k
1 + vk

1

of the position of the relevant marker. This position, x́k
1, cor-

responds to the projection from the point x̂k
1 onto the line

L1, as in Fig. 6. This is applicable for the cases in which the
motion capture system fully reconstructs one or two marker
locations and another marker is visible in just one camera. If
a limb segment has only one known and one partially visi-
ble marker, the system is more reliable when it first predicts
the partially visible marker and then the entirely occluded
marker.

6 Bone length constraints using inverse kinematics

The UKF-VTM model for marker prediction returns good
estimates of the marker positions, even if the markers are
occluded for an extended period of time. It is, however, eas-
ily observable (see Fig. 7) that there are instances where the
reconstructed markers may break the rigid body assumption
(limbs may not have constant lengths over time), resulting in
a violation of the model’s structure. This is more obvious in
extreme cases where many markers from the same limb seg-
ment are occluded for an extended time period (see Fig. 15);
the limb segment lengths drift (as the inter-joint distances
were not fixed to be constant) even if the estimated marker
positions do not significantly differ from their true positions.
Therefore, it seems sensible to constrain the bone lengths to
be constant over time, taking into account the rigidity of the
body, as the skeleton methods do; this extension does not
pre-suppose any knowledge of the model. For such uncon-
strained models we can preserve bone lengths using Inverse
Kinematics techniques. Inverse Kinematics (IK) is defined
as the problem of manipulating articulated figures in an in-
teractive and intuitive fashion for the design and control of
their posture. It was first introduced in the robotics area, but
was then adapted in several other areas such as computer
animation, ergonomics, and gaming. Ishigaki et al. [37] im-
plement a real-time IK control interface for character ani-

Fig. 7 The results produced
using the UKF-VTM model. It
is seen that the distances
between hips and knees change,
since it is not guaranteed that
these distances are constant.
True positions are coloured
blue, while the predicted
positions are red

mation which translates the performance into correspond-
ing actions; that was achieved by integrating prerecorded
motions with online performance and dynamic simulation.
If the input motion does not match the conditions, a kine-
matic process is applied to match users’ motion with the ex-
ample interactions. However, the proposed inter-joint con-
straint approach requires offline training, meaning that the
results depend on the training data, and prior knowledge of
the model is required. To the best of our knowledge, this is
the first time that a real-time IK technique has been used
for CoR correction in the presence of missing elements in
optical motion capture.

6.1 Related inverse kinematics work

Several models have been proposed for solving the IK
problem from many different areas of study. Most papers
use variants of the Jacobian Inverse approach. The Jaco-
bian solutions are linear approximations of the IK prob-
lem; they linearly model the end effectors’ movements rel-
ative to instantaneous system changes in link translation
and joint angle. Several different methodologies have been
presented for calculating or approximating the Jacobian in-
verse, such as the Jacobian Transpose, Singular Value De-
composition (SVD), Damped Least Squares (DLS), Selec-
tively Damped Least Squares (SDLS), and several exten-
sions [7, 8, 11, 50, 65, 70]. Jacobian inverse solutions pro-
duce smooth postures; however, most of these approaches
suffer from high computational cost, complex matrix calcu-
lations, and singularity problems. An alternative approach is
given by Pechev in [53] where the problem is solved from a
control perspective. This approach is computationally more
efficient than the pseudo-inverse based methods and does
not suffer from singularity problems.

Another family of IK solvers is based on Newton meth-
ods. These algorithms seek target configurations which are
posed as solutions to a minimisation problem, hence they
return smooth motion without erratic discontinuities. The
most well known methods are Broyden’s method, Powell’s
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method and the Broyden, Fletcher, Goldfarb and Shanno
(BFGS) method [23]. However, the Newton methods are
complex, difficult to implement and have high computa-
tional cost per iteration.

Courty and Arnaud, [15], proposed a Sequential Monte
Carlo Method (SMCM) to incorporate kinematic con-
straints. Hecker et al., [29], utilised an iterative Inverse
Kinematics solver (Particle IK) with various parameters for
tuning the character skeleton behavior both statically and
dynamically. Neither method suffers from matrix singular-
ity problems and both perform reasonably well. Sumner et
al., [62], and later Der et al., [17], proposed mesh-based IK
solvers that learn the space of shapes from example meshes.
However, this family of methods produces poses which re-
quire a pre-learning phase and are highly dependent on the
training data.

A very popular IK solution is the Cyclic Coordinate De-
scent (CCD) method, first introduced by [67]. CCD is a
heuristic iterative method with low computational cost for
each joint per iteration, which can solve the IK problem
without matrix manipulations. However, CCD can suffer
from unrealistic animation, even if manipulator constraints
have been added. It is designed to handle serial chains, thus
it is difficult to extend to problems with multiple end effec-
tors or target positions for internal joints.

A more detailed overview of IK techniques is given
in [2]. Within this work, we incorporated FABRIK to solve
the IK problem. FABRIK (Forward And Backward Reach-
ing Inverse Kinematics) [3] is chosen since it is an itera-
tive algorithm which uses points and lines to solve the IK
problem. It divides the problem into 2 phases, a forward and
backward reaching approach, and supports all the rotational
joint limits and joint orientations by repositioning and re-
orienting the target at each step. It does not suffer from sin-
gularity problems, it is fast and computationally efficient.
FABRIK is simple, real-time implementable and can be eas-
ily extended to solve multiple end effector problems with
internal joints.

6.2 Adjusting FABRIK for CoR correction

The tracking systems may return null data due to occlusions
and that could cause interruptions in computation of pose
and orientation of the target objects. The use of forecasted
marker positions to compensate for these occlusion inter-
ruptions, and thus to drive real-time joint localisation, may
introduce some error in the CoR estimation, breaking the
rigid body assumption. Hence, inter-joint restrictions are in-
corporated using an adapted version of FABRIK for CoR
correction.

6.2.1 Problems with serial chain models

FABRIK is a real-time IK solver which returns smooth pos-
tures in an iterative fashion. It uses the positions of the joints

that have been estimated using predicted marker positions to
find updates that meet the fixed inter-joint distance assump-
tion. In the most general case, where the estimated CoRs
are not positioned at the end of the chain, the solution can
be achieved using a forward and backward iterative mode.
The proposed method starts from a joint of the chain which
was calculated using true marker positions and works for-
ward, adjusting each estimated joint along the way until the
next joint which was calculated using true data. Thereafter,
it works backward in the same way, in order to complete a
full iteration. This method, instead of using angle rotations,
treats finding the joint locations as a problem of finding a
point on a line; hence, time and computation can be saved.

A graphical representation of the algorithm in action is
given in Fig. 8. Assume p1, . . . ,pn are the joint positions of
a chain, where p1 and pn are joint positions calculated using
true data, and the joints inbetween are joints estimated using
predicted marker positions. Set the distances between each
joint to be di = |pi+1 − pi |avg, for i = 1, . . . , n − 1, b = p1

and t = pn; these distances can be established by averag-
ing over time from the frames where the markers, and the
joints, are available. Then check whether the target is reach-
able or not; find the distance between p1 and pn, dist, and
if this distance is smaller than the total sum of all the inter-
joint distances, dist <

∑n−1
1 di , the target is within reach,

otherwise, it is unreachable. If the target is within reach, a
full iteration is performed in two stages. In the first stage,
the algorithm estimates each joint position starting from p1,
moving forward to pn. Thus, initialise p1 = b and find the
line, l1, which passes through the joint positions p1 and p2.
The new position of the 2nd joint, p′

2, lies on that line with
distance d1 from p1. Similarly, the new position of the 3rd
joint, p′

3, can be calculated using the line l2, which passes
through p3 and p′

2, and has distance d2 from p′
2. The algo-

rithm continues until all new joint positions are calculated,
including p′

n.
Having in mind that initially pn was the true position

of the nth joint, a second stage of the algorithm is needed.
A full iteration is completed when the same procedure is re-
peated but this time starting from the true position of the
nth joint and moving backward to the 1st joint. Therefore,
let the new position for the nth joint, p′′

n, be its initial po-
sition t. Then, using the line ln−1 that passes through the
points p′′

n and p′
n−1, we define the new position of the joint

p′′
n−1 as the point on that line with distance dn−1 from p′′

n.
This procedure is repeated for all the remaining joints, in-
cluding p1. The procedure is then repeated, for as many it-
erations as needed, until p1 and pn are close enough (to be
defined) to their initial, true positions. FABRIK always con-
verges to any given chains/goal positions, when this is pos-
sible. If there are constraints which do not allow the chain to
bend enough or if the target is not within the reachable area,
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Fig. 8 A simple example of FABRIK for the case where the estimated
joints are positioned inbetween 2 true joint positions. (a) The initial
position of the chain, where {pi} are true and {p̂i} are estimated joint
positions. (b) The first phase of the algorithm; the joint p′

i has been
adjusted as the point on line li−1 with distance di−1 from pi−1. (c) The
second phase of the algorithm: let the new position of p′

5 be its initial
position p5; repeat the procedure starting this time from the other side
of the chain. (d) The final posture; the algorithm is repeated for as
many iterations as needed until the difference between the true and the
returned positions of the joints p1 and p5 is less than a given tolerance

there is a termination condition which compares the previ-
ous and the current position of the joint p1, and if this dis-
tance is less than a specified tolerance, FABRIK terminates
its operation. Several optimisations can be achieved using
Conformal Geometric Algebra (CGA) [19, 32] to produce
faster results and to converge to the final answer in fewer it-
erations; CGA has the advantage that basic entities, such as
spheres, planes, or circles, are simply represented by alge-
braic objects. Therefore, a direct estimate of a missing joint,
when it is between 2 true positions, can be achieved by in-
tersecting 2 spheres with centre the true joint positions and
radii the distances between the estimated and the true joints,
respectively. Another simple optimisation is the direct con-
struction of a line pointing toward pn, when the target is
unreachable, adjusting the distances in such a way that each
distance has changed uniformly. The adjusted FABRIK for
CoR correction is illustrated in pseudo-code in Algorithm 1.

There are, indeed, some special instances where FABRIK
does not necessarily work in an iterative fashion. Such a spe-
cial case is when the joints, which have been estimated using
predicted markers, are located at the end of the chain. This
is a simplified case of the general solution, since the answer
is given directly in one single iteration. The new simplified
algorithm is given here: assume pi is a true joint position.
The joint update p′

i+1 is set as the point on line li that passes
through pi and pi+1 and has di distance from pi . This pro-
cedure is repeated for all the remaining estimated joints until
the end of the chain. A graphical representation of an imple-
mented example is given in Fig. 9.

6.2.2 Problems with tree models

In reality, most of the real legged models are comprised of
several kinematic chains in a tree fashion. The proposed al-
gorithm can be easily extended to process tree models with
multiple serial chains. The solution is similar to the origi-
nal extension of FABRIK for multiple end effectors, given
in [3]. Hence, if the sub-base3 joint is a true position, FAB-
RIK is used on each chain with estimated CoR positions
individually, starting from the sub-base, in a forward and
backward iterative fashion. If the sub-base is an estimate,
the same procedure is applied but this time starting from the
true joints of the connected chains and moving towards to
the sub-base. This will produce as many different positions
of the sub-base as the number of the connected chains. The
new position of the sub-base will then be the centroid of all
these positions. In the second stage, the normal algorithm is
applied separately for each chain, starting now from the sub-
base and moving outward to the starting joints. The method
is repeated until all true joints have no significant change
between their initial and updated positions.

3A sub-base joint is a joint which connects 2 or more chains.
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Algorithm 1: A full iteration of FABRIK for CoR
correction

Input: The joint positions pi for i = 1, . . . , n, and
the average distances between each joint
di = |pi+1 − pi |avg where n is the number of
joints of the chain.

Output: The new joint positions pi for i = 1, . . . , n.
b = p1; t = pn;0.1

% Initialisation of the dif A value.0.2

difA = 10.3

while dif A > tol do0.4

% STAGE 1: FORWARD REACHING0.5

% Set p1 to its initial position.0.6

p1 = b0.7

for i = 1, . . . , n − 1 do0.8

% Find the distance ri between the estimated joint0.9

position pi+1 and the joint pi

ri = |pi+1 − pi |0.10

λi = di/ri0.11

% Find the new joint positions pi .0.12

pi+1 = (1 − λi)pi + λipi+10.13

end0.14

% STAGE 2: BACKWARD REACHING0.15

% Set pn to its initial position.0.16

pn = t0.17

for i = n − 1, . . . ,1 do0.18

% Find the distance ri between the joint position0.19

pi+1 and the estimated joint pi

ri = |pi+1 − pi |0.20

λi = di/ri0.21

% Find the new joint positions pi .0.22

pi = (1 − λi)pi+1 + λipi0.23

end0.24

dif A = |p1 − b|0.25

end0.26

Fig. 9 A simple case where the estimated joints are located at the end
of the chain. In this example, the serial chain has 4 joints where p1 and
p2 have been calculated using true marker positions and the p̂3 and p̂4
using predicted markers positions. Thus, set p′

3 to be the point on line
l2 which has distance d2 from p2 and p′

4 the point on line l3 that has d3
distance from joint p′

3

6.2.3 Applying constraints

The main aim of this paper is to describe a general solu-
tion, where each single joint is treated as a ball and socket
joint, allowing 3 degrees of freedom. In this way, we can
ensure the generality of the proposed method, producing
solutions without prior knowledge of the model. The pro-
posed IK technique is used just to correct mis-positioning of
joint estimates in the presence of missing data. The orienta-
tion of each joint is still calculated using the attached sensor
LEDs (or their forecasted positions). In special cases where
it is desirable to incorporate joint restrictions, especially for
cases where joints are located at the end of the kinematic
chains, FABRIK readjusts the target position and orienta-
tion, on each step, to satisfy the joint biomechanical limits.
Note that FABRIK is able to support most of the joint types,
as detailed in [3].

Obviously, the more information available regarding the
model’s structure and joint constraints, the more accurate
and efficient will be the results. This information can help
to give a visually more realistic motion within a feasible
set; however, it will limit the universal use of the proposed
methodology and fails to satisfy our aim of no prior knowl-
edge of the model.

Self-collision determination Collision detection has been
a fundamental problem in computer animation, physically-
based modelling, geometric modelling, and robotics. Since
the data used in these examples are captured from a mark-
ered optical motion capture system and since the 3d an-
imated humanoids do not have a mesh that defines their
external shape, self-collisions are not considered. Never-
theless, self-collisions can be handled using existing tech-
niques, such as [10, 44].

Bone length constraints The Inverse Kinematic technique
used in this work ensures that, even if the marker prediction
system fails to track the marker positions, the derived CoRs
will be good estimates of their true positions. This happens
since the IK procedure restricts the limb segment (bone)
length to a constant value over time. The true length of each
limb segment is calculated by averaging the inter-joint dis-
tances, from previous frames, when all joints have been es-
timated using true marker positions. Figure 10 shows an ex-
ample of how the inter-joint distance varies over time; as ex-
pected, it is nearly constant. The predicted marker positions
can cause instability in the inter-joint distance, which in
some extreme cases might differ significantly from the mean
bone length. The effectiveness of the proposed method is
strongly related to the stability of the joint pairwise distance.
Large variation of that distance means skeletal structure vi-
olation. In this manner, FABRIK guarantees that joints will
still have a fixed distance between them throughout the oc-
clusion period, allowing a better approximation of the CoR
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Fig. 10 An example showing the inter-joint distance variation over
time when true marker positions have been used, when the joints have
been estimated using predicted marker positions, and after incorporat-
ing FABRIK for CoR correction (assuming that the distance is constant
over time)

estimates. On real motion capture data, limb lengths might
exhibit minor variations due to noise from skin movements
at the point of marker attachment, and limb expansions, but
in this work they are assumed to be rigid. Note that the limb
length variation is further reduced when the data have been
isolated using the proposed UKF-VTM method, as is briefly
described in Sect. 7.

It is important to stress out that the proposed bone length
constraint algorithm (FABRIK) is independent and can be
easily fitted to most marker prediction methods for CoR cor-
rection.

7 Results and discussion

Experiments were carried out using a 24 camera PhaseS-
pace motion capture system capable of capturing data at
480 Hz [54]. The algorithm described in this work can pro-
cess up to 300 limb segment pairs per second (using MAT-
LAB). Our datasets comprise real data (i.e. captured data
with natural occlusions or occlusions generated by artificial
deletion) with more than 10,000 frames in each. It is tech-
nically impossible to evaluate the error when a benchmark
does not exist to compare with. Thus, different numbers of
markers per limb segment have been deleted randomly, in
different parts of the human body, to enable error calcu-
lation. Nevertheless, the estimates of the missing markers
and CoRs in instances where natural deletions exist have
been evaluated visually based on the assumption that the
character displays smooth and natural motion. The proposed

methodology has been tested on various motions including
dancing (14 segment body datasets), fast walking (7 seg-
ment leg datasets) and boxing (5 segment arm datasets). Us-
ing real data with occlusions generated by artificial deletion,
we are able to calculate the error of the proposed method-
ologies; the error is measured as the average distance be-
tween the true and the estimated position (for marker and
the CoRs) after many runs and different artificial deletions.
As expected, the error varies between different instances of
marker occlusion. As more markers become available, more
information relative to the limb segment is available and
thus, a higher accuracy is achieved. The magnitude of the
error reported in the results is given in terms of real world
distances. Within this work, our methodology (referred as
UKF-VTM) was tested and compared against some of the
most popular marker prediction approaches: an EKF model,
such as [1], using similar marker constraints to the ones pro-
posed here, a cubic spline interpolation and a real-time ex-
trapolation method with marker position constraints, as re-
ported in [55].

Using the VTM we took into consideration the velocity,
direction, and acceleration changes of the markers’ trajecto-
ries over time. In addition, we considered the rotation of the
limbs over time for a more accurate estimation of the marker
positions. Certain drawbacks of the simple EKF were over-
come by using a more evolved and sophisticated method;
the use of a Variable Turn Model gives significant improve-
ments in cases where the trajectories of the markers are vari-
able and have abrupt fluctuations in speed and direction. The
proposed system (UKF-VTM), without applying FABRIK
for bone constraints, returns an average error (over 20 runs)
of 1.296 cm in the case of one missing marker, 3.474 cm
when 2 markers are missing, and 8.401 cm when all mark-
ers are occluded. The corresponding CoR estimation error is
1.082 cm in the case of one missing marker, 1.9867 cm in
the case of two markers and 7.859 cm in the case where no
markers are visible to the cameras. Table 1 lists and com-
pares the results of each method implemented here under
several occlusion scenarios. In general, the methods fail to
track the missing marker paths when the marker constraints
were not incorporated, especially in instances were the oc-
clusion lasts longer than a time threshold. Table 1 also tabu-
lates the worst case scenario (distance between true and pre-
dicted positions) of marker prediction and CoR estimation in
addition to the standard deviation. The worst case scenarios
usually appear at abrupt changes in velocity and direction of
the missing marker during the occlusion period, where the
UKF-VTM model requires some time to efficiently track the
target.

Obviously, the interpolation method has the lowest com-
putation cost, but it is an off-line application. The UKF-
VTM framework increased the processing time by 20%
compared to the simple EKF, processing 315 limb segment
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Table 1 Average results (over 20 runs) under multiple cases of occlusion (large occlusions of 2,500 frames in total)

Method Missing
markers on a
limb segment

Markers CoRs Proc.
limbs per
second

Error
(cm)

Worst case
scenario (cm)

Standard
deviation (cm)

Error
(cm)

Worst case
scenario (cm)

Standard
deviation (cm)

UKF-VTM One marker 1.2958 3.5677 1.3412 1.0820 1.7888 0.5897 315
Two markers 3.4737 7.6584 2.5149 1.9867 2.7845 0.5904

All markers 8.4012 12.8749 3.8787 7.8591 13.1183 1.1499

Interpolation One marker 9.4687 15.2552 5.1709 6.1189 15.8777 5.1825 900
Two markers 10.5241 16.8874 5.8501 8.5874 17.3340 5.9889

All markers 11.0010 17.2282 5.9918 12.2514 20.2111 6.7001

Extrapolation One marker 1.8574 4.8811 2.4167 1.5874 3.1147 1.2036 270
Two markers 4.5214 9.0444 3.9057 2.5147 3.5558 0.5587

All markers 10.5961 13.8541 2.4808 11.5824 15.2588 2.7193

EKF One marker 1.3982 3.8971 2.1071 1.2356 2.1496 0.6654 370
Two markers 3.5331 8.0145 2.7060 2.0302 3.0098 0.8944

All markers 8.4205 13.0014 3.0182 7.9055 13.1198 3.0018

Table 2 Average results (over 20 runs) on real data with occlusions
generated by deletions. Case of one missing marker on each limb seg-
ment for more than 1500 frames.

Entirely occluded
(error cm)

Partially visible
(error cm)

Change

Markers 1.3458 0.2554 −81.02%

CoRsa 2.2247 0.5628 −74.70%

awhen āw is updated using the predicted data

pairs per second in MATLAB; which does, however, still al-
low real-time implementation. The UKF-VTM method per-
forms better than the other methods looked at here, resulting
in the most accurate results; our methodology efficiently re-
covers good estimates of the missing markers and accurate
real-time CoR estimation.

A further error reduction was observed when the missing
markers were partially visible to one camera. The error is
significantly decreased, by 80% for marker prediction and
75% for CoR estimation, compared to the case where this
information was ignored. Table 2 gives the prediction error
for the case of one missing marker on each limb segment
when the missing markers are both entirely occluded and
visible in just one camera.

The difference between true and estimated positions is
further reduced when the fixed inter-joint pairwise assump-
tion was taken into consideration. The CoR error, in our
methodology, is decreased on average (over 30 runs) by
11.9% in total, 2.96% when the estimated joints are located
at the end of the chain and 12.7% when they are positioned
between 2 true positions. FABRIK ensures that the inter-
joint pairwise distances are constant over time, thus elim-

inating the error in the CoR estimation due to unnatural
bone extensions. The error reduction is larger in cases where
the estimated joints are between 2 true CoR positions, since
both true joints, in an iterative fashion, constrain the inter-
joint distance from the estimated joints. In the case where
the estimated joints are positioned at the end of the chain,
only one true joint contributes in the final solution. Table 3
presents the average error and achieved error reduction after
applying IK to the case of a humanoid model with artificial
deletions on 6 markers (over 30 markers in total) for more
than 2,500 frames out of a total of 8,000. At the same time,
the processing time was increased by only 5.27%, process-
ing now approximately 300 limb segment pairs per second.
FABRIK has been applied to all methodologies ensuring that
the inter-joint distances will remain unchanged over time;
the CoR error was reduced on average by 12.92% for the
EKF, 45.33% for the extrapolation method, and 62.8% for
the interpolation approach.

Figure 11(a) shows examples of the true and predicted
x-positions of an occluded marker over time, and its cor-
responding CoR (after incorporating FABRIK for CoR cor-
rection to all methods) for the case of a single occlusion. It
is clear that the occluded marker can be tracked with high
accuracy when it is visible in at least one camera and its
CoR position can be reconstructed efficiently even if the
occlusion period exceeds 1,000 frames. Note that the joint
estimates differ from their true positions, even after the oc-
clusion period, since the rotor Rk expressing the rotation
between the first and the current frame is an estimation us-
ing the predicted marker positions (see (4) and (5)). Nev-
ertheless, the error of the CoR is reduced over time (when
all markers are visible) because the new markers positions
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Table 3 Error reduction using Inverse Kinematics

Method Overall results Joints are located at
the end of the chain

Joints are located in
between 2 true joint positions

Error (cm) Change Error (cm) Change Error (cm) Change

UKF-VTM CoR using only predicted marker positions 2.0268 2.1013 2.0131

Corrected CoR using FABRIK 1.7856 −11.90% 2.0391 −2.96% 1.7574 −12.70%

Interpolation CoR using only predicted marker positions 7.7149 8.3149 7.2650

Corrected CoR using FABRIK 2.8698 −62.80% 3.7950 −54.35% 2.2937 −68.42%

Extrapolation CoR using only predicted marker positions 4.2437 4.9334 3.7263

Corrected CoR using FABRIK 2.3200 −45.33% 2.8495 −42.25% 1.9712 −47.10%

EKF CoR using only predicted marker positions 2.5077 2.8684 2.3509

Corrected CoR using FABRIK 2.1836 −12.92% 2.5474 −11.19% 2.0212 −14.02%

give a more accurate estimate of the rotor. Figure 11(b) also
shows an example of the error variation for all methodolo-
gies due to occlusion for the case of 1 missing marker on
each limb segment. Clearly, the hole-fitting achieved using
the UKF-VTM method has the lowest error for both the av-
erage and the worst case scenario; this error is further de-
creased when the marker is visible to just one camera.

Figure 12 reinforces the above showing the cumulative
distribution function (CDF) of the estimation error for the
case of one missing marker on each limb segment. The x-
axis shows the estimation error and the y-axis shows the
probability, for y = a, of having an error less than or equal
to a. Hence, for example, the probability that the estima-
tion error is less than or equal to 1.2 cm is approximately
0.57 for the extrapolation and less than 0.4 for interpola-
tion, while it is 0.62 for the case of the UKF-VTM. The me-
dian estimation error of the markers using the EKF model
is approximately 1.12 cm (0.83 cm for the CoR), where the
corresponding median error for the case of UKF-VTM is
approximately 1.09 cm (0.75 cm for the CoR and 0.12 cm
when markers are visible to just one camera).

The interpolation method produces smooth results since
it uses previous and future positions. Our method, along
with other approaches that use data only from previous
frames, exhibits small oscillations or discontinuities be-
tween the last predicted position and the first frame when
the marker again becomes visible. This is expected as no fu-
ture information is used. We can avoid this phenomenon if,
instead of using the true marker position as the final result,
we continue to use the UKF framework. This way we will
have smoother results with just a marginal increase in the
marker and COR errors.

Extrapolation and interpolation return useful predictions
for short-time occlusions but fail to track the marker posi-
tions when the occlusion is maintained for extended time pe-
riods, especially if markers change rapidly in direction and

velocity. In particular, the path followed by the interpola-
tion method does not reflect the actual state of the missing
marker, but only connects the available positions using a cu-
bic spline shape. In contrast, the UKF-VTM performs fairly
well even if markers are missing for long time periods.

Figure 13 shows an example of using our algorithm on
real data; in blue are the true positions of the markers and
CoRs and in red the predicted positions. Figure 14 is an-
other example that compares the results on the leg model;
(a) presents the results when only the integrated UKF-VTM
model is used, and (b) shows the results when bone length
control was incorporated using FABRIK. Note the bone
length violation in Fig.14(a), which is most obvious on the
hips.

Figure 15 shows another example of implementation un-
der an extreme case with extended marker occlusions. The
top picture of the figure shows the results when the fixed
inter-joint distance was not imposed and the bottom pic-
ture when FABRIK was applied. Obviously, in the first case
the skeletal structure was violated since the bones were
not restricted to their original lengths; in the second case
the results have been improved to a visually more natural
shape.

Experiments demonstrate that the proposed methodology
can effectively track the occluded markers with high accu-
racy, even if they are occluded for extended periods of time,
recovering in real-time good estimates of the true joint posi-
tions. FABRIK controls and corrects the CoR estimates de-
creasing the error between the estimated and true positions,
thereby enabling real-time skeletal reconstruction. The re-
sulting motion is natural and smooth, without oscillations
and discontinuities, resembling that of true human move-
ments.

The proposed approach, as well as predicting the coordi-
nates of the invisible LEDs to prevent intermittent tracking,
can also be used to isolate noisy data or bad inputs from in-
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Fig. 11 Example showing comparison results for each methodology
for the case of 1 missing marker on each limb segment; occlusions were
introduced to this dataset for extended time periods of up to 1,500 con-
secutive frames. The graph shows the forecasted trajectories when the
occlusion was between frames 3,000 and 3,600. The upper row shows

the results for marker predictions and the lower row for CoR estimates,
after applying FABRIK. (a) The zoomed x-coordinate path over time
(in this example note that the black and green curves for the markers
are exactly overlayed), (b) the corresponding error variation over time

dividual motion capture cameras. As discussed in Sect. 4,
motion capture data are noisy due to optical measurement
problems, mis-calibration of the optical systems, skin move-
ments, etc. After isolating the data using our UKF-VTM ap-
proach, smoother trajectories for both the marker and CoR
coordinates has been perceived. It is also observed that the
bone lengths are more constant, reducing the standard devi-
ation from 4.2063 cm to 3.9185 cm, when the isolated data
have been used.

8 Conclusion

This paper considers the problem of forecasting the oc-
cluded marker positions of optical motion capture systems
to prevent intermittent tracking and automatically establish
a skeleton model to which the markers are attached. An Un-
scented Kalman Filter framework was deployed for marker
prediction using a Variable Turn Model as the observation
sequence, in addition to a constant rotation assumption over
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Fig. 12 Example showing the CDF of the estimation error (over 10
runs) for each methodology for the case of 1 missing marker on each
limb segment: (a) the markers CDF and (b) the CoR CDF

time. Inferred information from neighbouring markers has
been used to give observation states via an approximate rigid
body assumption. The proposed marker constraint model
is simple and real-time implementable. At the same time,
the proposed system is the first method which takes ad-
vantage of the information returned by each single camera.
The predicted data is used for real-time joint localisation
and the joint positions are then re-positioned using an In-
verse Kinematics technique by taking into account the fact
that inter-joint distances are constant over time. The work
is novel in that it incorporates an adjusted version of FAB-
RIK, a real-time iterative IK solver, which ensures fixed
bone lengths over time, thus resulting in a more feasible mo-

Fig. 13 An example of marker prediction and CoR estimation using
the proposed methodology. The true positions are coloured blue and
the predicted positions red. (a) The artificially deleted data, (b) the
predicted data

Fig. 14 An example of implementation. Blue represents the true po-
sitions and red the predicted positions: (a) using only the integrated
UKF-VTM framework, (b) using FABRIK for bone length control

tion. Our methodology outperforms in accuracy the methods
used for comparison in this work. It is able to maintain real-
time marker predictions, thus enabling good estimates of the
CoR, even in the presence of several marker occlusions on
each limb segment. It is reliable in datasets with large se-
quences of null data, even if the limb rapidly changes veloc-
ity and direction. The proposed technique could also be used
to isolate bad inputs from single cameras; it is a common
phenomenon that even one error in a large number of marker
inputs can result in several errors per second, pulling the
marker position out of the expected path. Thus, this method
can be utilised to eliminate pops and jumps from camera
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Fig. 15 An example of implementation under extreme cases with ex-
tended data occlusion. The top picture shows results using the inte-
grated UKF-VTM; the lower picture shows the results when FABRIK
was applied in order to maintain the fixed inter-joint distance assump-
tion. The true positions are coloured in blue and the predicted in red

switching and errors as they fall outside the predicted posi-
tions.

Future work will introduce biomechanical constraints to
restrict motions to those from a feasible set; however, prior
knowledge of the model and joints will then be needed.
Also, a hybrid system with low cost inertial measurement
units could be used to validate the method proposed here.
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