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Abstract—This paper considers the problem of taking marker
locations from optical motion capture data to identify and pa-
rameterise the underlying human skeleton structure and motion
over time. It is concerned with real-time algorithms suitable
for use within a visual feedback system. A common problem
in motion capture is marker occlusion. Most current methods
are only useful for offline processing or become ineffectivewhen
a significant portion of markers are missing for a long periodof
time. This paper presents a prediction algorithm, using a Kalman
filter approach in combination with inferred information fr om
neighbouring markers, to provide a continuous flow of data. The
results are accurate and reliable even in cases where all markers
on a limb are occluded, or one or two markers are not visible for
a large sequence of frames. Pre-defined models are not required
and skeleton fitting to this complete data can then be updated
in real-time.

I. I NTRODUCTION

Markered optical motion capture is a technology used to
turn multiple camera observations of a moving subject into
3d position and orientation information about that subject.
Such information can be used to analyse technique for sports
training [1], [2]; observe asymmetries and abnormalities in
rehabilitation medicine [3]; and generate virtual characters
for films or computer games [4]. However, even with costly
professional systems, there are instances where the system
returns no data due to the occlusion of markers by limbs,
bodies or other markers. Each marker must be visible to at least
two cameras in each frame in order to unambiguously establish
its position. Although many methods have been developed to
handle the missing marker problem, most of them are not
applicable in real-time and often require manual intervention.

This paper proposes a real-time approach for estimating
the position of occluded markers using previous positions
and information inferred from an approximate rigid body
assumption. Without assuming any skeleton model, we take
advantage of the fact that for markers on a given limb segment,
the intermarker distance is approximately constant. Thus,the
neighbouring markers1 provide us with useful information
relevant to the current position of the non-visible marker.With
a continuous stream of accurate3d data, we can perform real-

1Neighbouring markers are considered as markers belonging to the same
limb segment.

time centre of rotation (CoR) estimation, thereby producing
skeletal information for use in visual performance feedback.

Experiments demonstrate that the method presented effec-
tively recovers, in real-time, a good estimate of the true
positions of the missing markers, even if all the markers on a
limb are missing or occluded for a long period of time. This
thus enables continuous real-time CoR estimation.

II. RELATED WORK

A number of methods that can deal with the problem
of estimating the positions of missing markers have been
proposed. However, the performance of many of these is
unsatisfactory when we have unusual motions or a high
percentage of missing markers. Some commonly used methods
interpolate the data using linear or non-linear approaches[5],
[6], [7]; this can produce accurate results, but is useful only
in post-processing. Another drawback of such methods is
that they can effectively estimate the missing markers only
if they are missing for a short period of time, typically less
than0.5 seconds. Some MoCap systems also provide missing
marker recovery solutions using interpolation techniquesin
combination with kinematic information, but again, these are
not real-time solutions.

Rhijn and Mulder [8] proposed a novel model-based op-
tical tracking and estimation system for composite interaction
devices. The proposed system automatically constructs thege-
ometric skeleton structure, degrees of freedom (DOF) relations
and DOF constraints between segments. The system supports
segments with only a single marker, so that interaction devices
can be small with a low number of markers. However, it is an
off-line procedure and cannot be used in real-time applications.

Dorfmüller in [9] used an extended Kalman filter (EKF) to
predict the missing markers using previously available marker
information while Welch et al. in [10] used an EKF to resolve
occlusions based on the skeletal model of the tracked person.
Again, these methods require manual intervention or become
ineffective in cases where markers are missing for an extended
period of time.

Herda et al. in [11] used a post-processing approach to
increase the robustness of motion capture systems by using
a sophisticated human model. They predict the3d location
and visibility of the markers using information from the



neighbouring markers that share kinematic relations with the
occluded markers, even if the markers are missing for a
long period of time. However, the skeleton information must
be known a priori in order to apply this method. [12] also
takes advantage of the fact that the markers on a limb have
fixed inter-marker pairwise distances. Thus, in the case of
a missing marker, its position can be recovered through the
distance constraints imposed by markers on the same limb.
This approach may become ineffective when all or a significant
number of markers are missing. Ringer and Lasenby [13]
also present an automatic method to identify indistinguishable
markers based on cliques1. However, this requires an off-line
procedure in order to determine marker cliques and parameters
of the skeletal structure. Chai and Hodgins [14] present a
method that uses neighbouring markers to estimate the missing
marker in the current frame. They propose a local linear model
from these neighbours and then reconstruct the full pose of the
frame by conducting an optimisation in the space constrained
by the model. This method is very effective but the set of
control signals, i.e. markers, and the skeleton information must
be known beforehand.

Recently Liu and McMillan in [15], presented a piecewise
linear approach to estimating human motions from a pre-
selected set of informative markers (principal markers). This
method allows markers to be missing for a considerable period
of time and is still able to recover positions using all of the
available data. However, it is an off-line method and while
it produces reasonable estimates, is unsuitable for real-time
applications.

III. T HE TRACKING METHOD

A. Finding the Rotors and the CoR

Locating the CoRs is a crucial step in acquiring a skeleton
from raw motion capture data. The data in section IV is
acquired from an active marker system and therefore no
tracking is necessary. In order to calculate the CoR between
two sets of markers and from this construct the human skeleton
model, it is helpful to have the rotation of a limb at any given
time. We can estimate the orientation of a given limb at timet

relative to a reference frame using the well-knownProcrustes
formulation [16].

If we take a set of labelled pointsxi and the same set of
points after an unknown rotationR(t), yi, then the problem
of finding the unknown rotor or unit quaternion,R, can be
formulated as,

R = arg max

n
∑

i=1

(

RxiR̃
)

yi (1)

whereR̃ defines the quaternion conjugate of the rotorR, and
n is the number of points.

The location of the joints can be calculated using [17],
which proposes a closed form sequential solution enabling
real-time estimation of the CoRs. This approach takes full

1The distance between each pair of markers in a clique is constant.

advantage of the approximation that all markers on a body
segment are attached to a rigid body.

B. The Kalman Filter

The Kalman filter [18] is a tracking technique used in
many different areas: e.g. autonomous or assisted navigation,
interactive computer graphics and motion prediction. The
simplicity and robust nature of the filter make it popular and
practical for many prediction algorithms.

The process model that updates thestate over time is given
(in its most general form) by (2), where the statext at timet

is obtained from the state at timet − 1;

xt = Axt−1 + But−1 + wt−1 (2)

whereA is the state transition model which is applied to the
previous statext−1, B is the control input model,ut−1 is the
control vector andwt−1 is the process noise.w is assumed
to be multivariate normal, with zero mean and covarianceQ.

The measured dataZt is related to the current state by

Zt = Hxt + vt (3)

whereH is the observation model andvt is the observation
noise, also assumed multivariate normal with zero mean and
covarianceR.

The predicted stateyt and its errorEt can be written as;

yt = Ax̂t−1 + But−1 Et = APt−1A
T + Q (4)

wherex̂ refers to theestimate andP is covariance of the state
estimate.

TheKalman gain between actual and predicted observations
is:

Kt = EtH
T

(

HEtH
T + R

)

−1
(5)

Thus given an estimatêxt−1 at t−1, the time update predicts
the state value at timet. The measurement update then adjusts
this prediction based on the newyt. The estimate of the new
state given prediction and correction from observations isthen
given by

x̂t = yt + Kt (Zt − Hyt) (6)

The Kalman gainKt is chosen to minimise the steady-state
covariance of the estimation error givenQ andR. Finally, the
error covariance matrix of the updated estimate is;

Pt = (I − KtH)Et (7)

Our goal is to build a model that predicts the current state
using previous states. In this work, a constant velocity model
is used. Hence,

yt = xt−1 + ẋt−1dt (8)

wherexi and ẋi are respectively the position and velocity of
the marker in framei.

Equation (4), which gives the predicted state, can be written
in matrix form as;

[

yt

ẏt

]

=

[

1 dt

0 1

][

xt−1

ẋt−1

]

(9)



i.e. we assume a simple model without any external controls
or constraints thus enabling us to ignoreB andu.

C. The Observation Vector

The observation vector,Zt, gives the observed position
of the tracked marker when this is available, otherwise it
represents estimated position. The state vector represents true
position and velocity as given above. In order to cope with
cases where markers are missing for long periods of time,
we implement a tracker that uses information not only from
the previous frames, but also from the current positions of
neighbouring visible markers. We assume three markers on
each limb. In the presence of noise the observation vector is
updated as given below:

• Where all markers are visible on a given limb, then:

Zt = Hxt + vt (10)

wherext is the current state of a tracked marker on the
limb. In this caseH is the identity andR is determined
empirically. Many factors contribute to marker noise
such as optical measurement noise, miscalibration of the
optical systems, reflection, motion of markers relative to
the skin and motion of the skin relative to the rigid body
(underlying bone).

• In the case where two markers are visible on the limb,

Zt = Hx̂t
1 + vt (11)

wherex̂t
1 is the estimated position of the occluded marker

m1 in frame t. x̂t
1 can be calculated as given below.

Firstly we calculateDt−1

1,2 and Dt−1

1,3 which correspond
to the vectors between the occluded markerm1 and the
visible markersm2, m3 in framet−1 respectively. These
vectors are given byDt−1

i,j = xt−1

j − xt−1

i . One obvious
way to proceed is to calculate the pointx̃t

1 which is an
average of the estimated positions in framet using the
D vectors from framet − 1;

x̃t
1 =

(xt
2
−D

t−1

1,2 )+(xt
3
−D

t−1

1,3 )
2

(12)

where xt
i is the position of markeri in frame t. In

subsequent frames we can continue to use the fact that
the inter-marker distance is approximately constant. We
now improve on this estimate by finding the solution of
the intersection of the two spheres in framet with centres
xt

2, xt
3 and radii |Dt−1

1,2 | and |Dt−1
1,3 |. x̂t

1, is assigned as
the closest point on the circle of intersection tox̃t

1. Fig.
1 illustrates this process.

• In the case of only one marker (m2) visible on a given
limb we again have;

Zt = Hx̂t
j + vt (13)

wherex̂t
j is the estimated position of the occluded marker

mj (j = 1, 3) in frame t. x̂t
j is given by;

x̂t
j = xt

2 − Dt−1

j,2 (14)

xt
2 is the position of the visible markerm2 on the limb

in the current frame andDt−1

j,2 is as described above. In
this case, we are using the constant velocity assumption
as we cannot estimate the rotation.

• When all markers on a limb are occluded the positions
of the markers can be estimated using information only
from previous frames. The observation vector,Zt, in
this instance is calculated using a rotor/quaternion based
method. This method assumes that the rotation of the
markers between two consecutive frames remains con-
stant. This is formulated asRt−1,t = Rt−2,t−1 = ∆R.
The observation vector is now equal to

Zt = Hx̂t + vt (15)

where x̂t is the state vector containing the estimated
positionsx̂t = Rt−2,t−1xt−1R̃t−2,t−1.
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Fig. 1. The observation vector in the case of 2 visible markers. The red dot,
x̃1, represents the average value as given in equation 12. The green dot,x̂1,
is the point on the intersection of the 2 spheres which is closest tox̃1.

IV. RESULTS AND DISCUSSION

The experiments were carried out using a 16 camera
Phasespace motion capture system [19]. The algorithm was
implemented in MATLAB and run on a Pentium IV PC.
The system can process up to 350frames per second (using
MATLAB). Our datasets comprise both simulated and real-
data (i.e. captured data with natural occlusions or occlusions
generated by artificial deletion) with more than 5000frames in
each. There are two categories: one with 7 segment leg datasets
and the other with 5 segment arm datasets. The3d location
of the markers can be reliably reconstructed even when we
have marker occlusion for more than1000 frames at a time,
returning position errors of less than 4mm from the true value.
The position of the CoR can be calculated with an error of
approximately 6.5mm in cases where one marker on each limb
segment is occluded, this increases to 9mm in cases where 2
out of 3 markers on a limb are not visible. Table I presents the
average results in the case of one missing marker on each limb
segment and fig. 2 shows an example of the error variation over
time due to occlusion.

The proposed method operates by exploiting the fact that
the distances between markers on a single limb segment are
approximately constant. Thus, the positions of the visible



marker(s) can be used for updating the position of the tracked
marker, even if information on the occluded marker is absent
for a large period of time. Fig. 3 shows two examples of the
proposed algorithms applied to real data.

TABLE I
AVERAGE RESULTS(OVER 30 RUNS) ON REAL DATA WITH OCCLUSIONS

GENERATED BY DELETIONS. CASE OF ONE MISSING MARKER ON EACH

LIMB SEGMENT.

Number of frames Error (mm)

Marker position error
Small occlusions (100 frames) 0.775145
Large occlusions (1500 frames) 3.881497

CoR error
Small occlusions (100 frames) 0.945687
Large occlusions (1500 frames) 6.548336
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Fig. 2. An example of the error between the predicted and the true positions
of the (a)Markers and (b)CoR respectively.

V. CONCLUSION AND FUTURE WORK

This paper describes an algorithm related to the problem
of using marker based optical motion capture data to auto-
matically establish a skeleton model to which the markers
are attached. It presents a prediction method that estimates
the missing markers in human motion capture data, and
reconstructs the skeletal motion. The missing marker positions
and CoRs are calculated in real-time using a Kalman filter that
is updated via information from neighbouring visible markers.
This approach works efficiently even if large sequences with
occluded data exist in which more than 1 marker is occluded

on each limb, and also when the limb rapidly changes direc-
tion. Future work will introduce biomechanical constraints to
restrict motions to those from a feasible set.
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Fig. 3. Two examples of a continuously reconstructed lower body sequence
showing all markers and CoRs.
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