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Abstract. This paper addresses the problem of real-time location of the
joints or centres of rotation (CoR) of human skeletons in the presence of
missing data. The data is assumed to be 3d marker positions from a mo-
tion capture system. We present an integrated framework which predicts
the occluded marker positions using a Kalman filter in combination with
inferred information from neighbouring markers and thereby maintains a
continuous data-flow. The CoR positions can be calculated with high ac-
curacy even in cases where markers are occluded for a long period of time.

Keywords: Kalman Filter, Missing Markers, Joint Localisation, Motion
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1 Introduction

Estimating the location of centres of rotations (CoRs) using markered optical
motion capture data is useful within technique analysis for sports training [1];
observation of asymmetries and abnormalities in rehabilitation medicine [2]; and
generation of virtual characters for films and computer games [3]. However, even
with many cameras, there are instances where occlusion of markers by elements
of the scene leads to missing data. In order to unambiguously establish its posi-
tion, each marker must be visible to at least two cameras in each frame. Although
many methods have been developed to handle the missing marker problem, most
of them are not applicable in real-time and often require manual intervention.

This paper proposes a real-time approach for estimating the position of oc-
cluded markers using previous positions and information inferred from an ap-
proximate rigid body assumption. The predicted marker positions are then used
to locate the human joints. Without assuming any skeleton model, we take ad-
vantage of the fact that for markers on a given limb segment, the inter-marker
distance is approximately constant. Thus, the neighbouring markers1 provide us
with useful information about the current positions of any non-visible markers.
With a continuous stream of accurate 3d data, we can perform real-time CoR
estimation, thereby producing skeletal information for use in visual performance
1 Neighbouring markers are considered as markers belonging to the same limb segment.
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feedback. Experiments demonstrate that the method presented effectively recov-
ers good estimates of the true positions of the missing markers, even if all the
markers on a limb are occluded for a long period of time.

2 Related Work

Recent papers have focused on real-time localisation of the CoR. [4] uses the
assumption of inter-marker rigidity between neighbouring markers. This allows a
closed form sequential algorithm. In this respect it differs from [5,6,7,8]. However,
this algorithm neglects frames containing missing markers.

Whilst several methods to estimate the location of missing markers have been
proposed, the performance of most is unsatisfactory in the presence of unusual
motions or of many contiguous occlusion-effected frames. Methods may interpo-
late the data using linear or non-linear approaches [9,10,11]; this can produce
accurate results, but is useful only in post-processing.

[12] proposes a model-based system for composite interaction devices (CID).
The system automatically constructs the geometric skeleton structure and de-
grees of freedom relations and constraints between segments. The system sup-
ports segments with only a single marker, allowing CIDs to be very small.
Unfortunately, this is an off-line procedure unsuitable for real-time applications.

[13,14] use an extended Kalman filter to predict the missing marker locations
using previous marker positions and a skeletal model. These methods become
ineffective when markers are missing for an extended period of time.

[15,16] use post-processing to increase the robustness of motion capture using
a sophisticated human model. They predict the 3d location and visibility of
markers under the assumption of fixed segment inter-marker distances. However,
the skeleton information must be known a priori.

Recently, [17] presented a piecewise linear approach to estimating human mo-
tions from pre-selected markers. A pre-trained classifier identifies an appropriate
local linear model for each frame. Missing markers are then recovered using avail-
able marker positions and the principal components of the associated model. The
pre-training session and the classifier limit the approach to off-line applications.

[18] presented a reliable system that could predict the missing markers in
real-time under large occlusions. However, this system did not consider the use-
ful information available when the markers are visible by a single camera. The
missing markers are usually not entirely occluded and this additional information
is used in this paper to produce a more reliable system.

3 Estimating CoR

Locating the CoRs is a crucial step in acquiring a skeleton from raw motion
capture data. The data discussed here is from an active marker system, hence
no tracking is necessary. To calculate the joints between two sets of markers it
is helpful to have the rotation of a limb at any given time. We can estimate the
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orientation of a limb at time k relative to a reference frame using the Procrustes
formulation [19].

The location of the joints can be calculated using [4]. This approach takes
advantage of the approximation that all markers on a segment are attached to
a rigid body. Suppose the markers are placed on two segments (x and y) joined
by a CoR. Let the CoR location in frame k be Ck. The vectors from the CoR
to markers in the reference frame are denoted by ai

x and aj
y for limb x and y

respectively, where i and j are marker labels. The position of the markers in
frame k is given by:

xk
i = Ck + Rk

xa
i
xR̃k

x yk
j = Ck + Rk

ya
j
yR̃k

y (1)

where Rx and Ry are the rotors (quaternions) expressing the rotation of the
joint limbs x and y respectively. R̃ is the quaternion conjugate of R. Let bk

ij be
the vector from xk

i to yk
j , that is:

bk
ij = xk

i − yk
j = Rk

xa
i
xR̃k

x − Rk
ya

j
yR̃k

y (2)

Now a cost function S can be constructed that has a global minimum at the
correct values of ai

x and aj
y if the data is noise free, and returns a good estimate

in the presence of moderate noise.
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where nx, ny are the number of markers on limbs x and y respectively, and m
is the number of frames used for the calculations. The minimum is given by the
solution of the simultaneous linear equations, obtainable by differentiation:
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where

b̄k =
1

nxny

nx∑

i=1

ny∑

j=1

bk
ij āw =

1
nw

nw∑

i=1

ai
w w = {x, y} (6)

Having calculated the Rk
w and āw , we can locate the CoR. However, due to

occlusions, there are instances where not all marker positions are available. If
and only if all markers are available on one limb segment, w, the CoR may
be estimated using only Rk

w in the current frame and āw as estimated in the
previous frame, via (1). If markers are occluded on both segments a method
such as that in the next section is needed.
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4 Missing Marker Position Estimation

The marker position estimates can by predicted using a Kalman filter [20], where
constraints from the neighbouring markers are applied for a more reliable system.

4.1 Framework

The process model to update the state of the Kalman filter is given by (7), where
the state xk at frame k is obtained from the state at frame k − 1;

xk = Axk−1 + Buk−1 + wk−1 (7)

where A is the state transition model, B is the control input model, uk−1 is the
control vector and wk−1 is the process noise. The measured data Zk is

Zk = Hxk + vk (8)

where H is the observation model and vk is the observation noise. w and v are
assumed to be zero mean multivariate normal with covariance Q and R.

The predicted state yk and its error Ek can be written as

yk = Ax̂k−1 + Buk−1 Ek = APk−1A
T + Q (9)

where x̂ refers to the estimate and P is the covariance of the state estimate.
The Kalman gain between actual and predicted observations is:

Kk = EkHT
(
HEkHT + R

)−1
(10)

Thus given an estimate x̂k−1 at k − 1, the time update predicts the state value
at frame k. The measurement update then adjusts this prediction based on the
new yk. The estimate of the new state is

x̂k = yk + Kk (Zk − Hyk) (11)

Kk is chosen to minimise the steady-state covariance of the estimation error.
Finally, the error covariance matrix of the updated estimate is;

Pk = (I − KkH)Ek (12)

In this work, a constant velocity model is used. Hence,

yk = xk−1 + ẋk−1dk (13)

where xi and ẋi are the position and velocity in frame i, and dk is the time step.
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4.2 Applying Constraints

The observation vector, Zk, gives the observed position of the tracked marker
when available, otherwise it represents estimated position. The state vector rep-
resents true position and velocity as given above. To cope with cases where
markers are missing for long periods of time, we implement a tracker that uses
information from both the previous frames and the current positions of neigh-
bouring visible markers. We assume three markers on each limb. In the presence
of noise the observation vector is updated as given below for 4 different scenarios;

All markers are visible on a given limb

Zk = Hxk + vk (14)

where xk is the current state of a tracked marker on the limb. In this case H is
the identity and R is determined empirically. Many factors contribute to marker
noise, and hence R, including optical measurement noise miscalibration of the
optical systems, reflection, motion of markers relative to the skin and motion of
the skin relative to the rigid body (underlying bone).

One missing marker on a limb segment

Zk = Hx̂k
1 + vk (15)

where x̂k
1 is the estimated position of the occluded marker m1 in frame k. x̂k

1
can be calculated as given below. Firstly we calculate Dk−1

1,2 and Dk−1
1,3 which

correspond to the vectors between marker m1 and markers m2, m3 in frame
k − 1 respectively. These vectors are given by Dk−1

i,j = xk−1
j − xk−1

i . Thereafter,
these vectors are rotated as D̂k

i,j = Rk−2,k−1Dk−1
i,j R̃k−2,k−1 where Rp,q is the

rotor expressing the rotation between frames p to q, assuming that the rotation
of the markers between two consecutive frames remains constant. One obvious
way to proceed is to calculate the point x̃k

1 which is an average of the estimated
positions in frame k using the D̂ vectors;

x̃k
1 = (xk

2−D̂k
1,2)+(xk

3−D̂k
1,3)

2 (16)

where xk
i is the position of marker i in frame k. We now improve on this estimate

by finding the solution of the intersection of the two spheres in frame k with
centres xk

2 , xk
3 and radii |D̂k

1,2| and |D̂k
1,3| respectively. x̂k

1 is assigned as the
closest point on the circle of intersection to x̃k

1 . Figure 1 illustrates this process.

Two missing markers on a limb segment

Zk = Hx̂k
j + vk (17)

where x̂k
j is the estimated position of the occluded marker mj (j = 1, 3) in frame

k. x̂k
j is given by:

x̂k
j = xk

2 − D̂k
j,2 (18)



Predicting Missing Markers to Drive Real-Time CoR Estimation 243

Fig. 1. The observation vector in the case of 2 visible markers. The red dot, x̃k
1 , repre-

sents the average value as given in equation 16. The green dot, x̂k
1 , is the point on the

intersection of the 2 spheres which is closest to x̃k
1 .

where xk
2 is the position of the visible marker m2 on the limb in the current

frame and D̂k
j,2 is as described above. In this case, we are using the constant

velocity assumption as we cannot estimate the rotation.

All markers on a limb segment are missing: Here we consider two possible
subcases; the case where the other limb segment has some markers visible and
the case where both limb segments have all of their markers occluded. If some
markers on the other limb segment are visible, the missing marker positions can
be calculated using the CoR estimate, Ĉk as calculated in Sect. 3. In that case
the observation vector of the Kalman filter is updated as:

Zk = Hx̂k
j + vk (19)

where x̂k
j is the estimated position of the occluded marker mj (j = 1, 2, 3) in

frame k. x̂k
j is given by;

x̂k
j = Ĉk + D̂k

j,c (20)

where D̂k
j,c is an estimate of the distance between marker mi and the CoR. This

approach takes advantage of the fact that the distance between markers and the
CoR is constant. This distance is equal to D̂k

j,c = Rk−2,k−1Dk−1
j,c R̃k−2,k−1 where

Dk−1
j,c = xk−1

j − Ck−1. This assumes that the rotation of the markers between
two consecutive frames remains constant.

If both limb segments have all markers occluded, only information from pre-
vious frames is used. The observation vector, Zk, in this instance is calculated
using a quaternion based method. This method also assumes that the segment
rotation between two consecutive frames is constant. The observation vector is
now equal to

Zk = Hx̂k + vk (21)

where x̂k is equal to x̂k = Rk−2,k−1xk−1R̃k−2,k−1.
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Fig. 2. The observation vector in the case of 2 visible markers and one marker visible
only by one camera. The magenta dot, x́k

1 , is now used for the calculation of the
observation vector, Zk = Hx́k + vk.

However, the motion capture system also provides us with additional infor-
mation which could be used for prediction of missing marker locations. Each
marker can be reconstructed by the motion capture system if it is visible in at
least two cameras. It is often the case that some markers are visible in only
one camera. This information identifies a line, L1, starting from the camera and
passing through the position of the missing marker. By relaxing the constraints
that the inter-marker distance is constant and accepting that the real position
of the marker is on the line L1, we can obtain a more accurate estimate of the
position of the relevant marker. This position, x́k

1 , corresponds to the projection
from the point x̂k

1 onto the line L1, as in Fig. 2. This is applicable for the cases
in which the motion capture system fully reconstructs one or two markers loca-
tions and another marker is visible in one camera. If a limb segment has only
one known and one partially visible marker, the system is more reliable when it
first predicts the partially visible marker and then the entirely occluded marker.

5 Results and Discussion

Experiments were carried out using a 16 camera Phasespace motion capture
system capable of capturing data at 480Hz [21]. The algorithm was implemented

Table 1. Average results on real data with occlusions generated by deletions. Case of
one missing marker on each limb segment for more than 1500 frames.

The error when the missing The error when the missing
markers are entirely occluded markers are visible by one camera

Error (mm)
Marker position 3.348151
CoR (when āw is updated 5.905546
using the predicted data.)

Error (mm)
Marker position 0.585351
CoR (using the predicted 1.281958
markers positions)
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Fig. 3. An example of the 3D positions of predicted and the true coordinates of the
Markers (a), (b) in the case of one missing marker on a limb segment and a miss-
ing marker visible by one camera respectively, and the CoR (c), (d) under the same
conditions. The occlusion periods are between frames 1000-2000 and 3000-3600.

in MATLAB and run on a Pentium IV PC. The system can process up to 350
frames per second (using MATLAB). Our datasets comprise both simulated and
real data (i.e. captured data with natural occlusions or occlusions generated by
artificial deletion) with more than 5000 frames in each. There are two categories:
one with 7 segment leg datasets and the other with 5 segment arm datasets. The
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3d location of the markers can be reliably reconstructed even when we have single
marker occlusion for more than 1000 frames at a time, returning mean position
errors of less than 3.5mm from the true value. The position of the CoR using the
predicted marker positions can be calculated with a mean error of approximately
6.35mm in cases where one marker on each limb segment is entirely occluded,
this increases to 11.8mm in cases where 2 out of 3 markers on a limb are not
visible. However, in the case where one of the limb segments has all its markers
available, the CoR can be calculated with higher accuracy using information
only from that limb segment, as in Sect. 3, where āw is now updated using the
predicted positions of the markers. The error between the true and the CoR
estimate for that instance is 5.9mm when one marker is occluded and 9.5mm
when two markers are missing. This error is significantly decreased to 0.6mm
for marker position estimations and 1.3mm for the CoR positions estimation in
the case where the missing markers are visible by one camera. Table 1 presents
the average results (over 30 runs) in the case of one missing marker on each
limb segment. Figure 3 shows an example of the 3D position variation over time
between the true and the predicted position of the markers and the CoR for two
particular cases of occlusion.

6 Conclusion and Future Work

This paper describes an algorithm related to the problem of using marker-based
optical motion capture data to automatically establish a skeleton model to which
the markers are attached. It presents a prediction method that estimates the
missing markers and reconstructs the skeletal motion. These positions are cal-
culated in real-time using a Kalman filter updated via information from neigh-
bouring visible markers. Also, the system takes advantage of the information
returned by each single camera regarding the position of the missing markers.
The predicted data is then used for real-time joint localisation. This approach
works reliably even if large sequences with occluded data exist, in which more
than 1 marker is occluded on each limb, and also when the limb rapidly changes
direction. Future work will introduce biomechanical constraints to restrict mo-
tions to those from a feasible set and a reliable model for predicting the rotors
expressing the rotation of each limb segment.
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