
3Inverse Kinematics Solutions Using
Conformal Geometric Algebra

Andreas Aristidou and Joan Lasenby

Abstract
This paper describes a novel iterative Inverse Kinematics (IK) solver, FABRIK,
that is implemented using Conformal Geometric Algebra (CGA). FABRIK uses a
forward and backward iterative approach, finding each joint position via locating
a point on a line. We use the IK of a human hand as an example of implemen-
tation where a constrained version of FABRIK was employed for pose tracking.
The hand is modelled using CGA, taking advantage of CGA’s compact and ge-
ometrically intuitive framework and that basic entities in CGA, such as spheres,
lines, planes and circles, are simply represented by algebraic objects. This ap-
proach can be used in a wide range of computer animation applications and is not
limited to the specific problem discussed here. The proposed hand pose tracker
is real-time implementable and exploits the advantages of CGA for applications
in computer vision, graphics and robotics.

3.1 Introduction

This paper describes a fast iterative Inverse Kinematics (IK) solver which is im-
plemented using Conformal Geometric Algebra (CGA). Geometric Algebra (GA)
[1] provides a convenient mathematical notation for representing orientations and
rotations of objects in three dimensions. The conformal model of GA extends the
usefulness of the 3D GA by expanding the class of rotors to include translations,
dilations and inversions, as well as being able to express lines, planes, circles and
spheres as elements of the algebra. Rotors are more numerically stable and more

A. Aristidou (�) · J. Lasenby
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ,
UK
e-mail: aa462@cam.ac.uk

J. Lasenby
e-mail: jl221@cam.ac.uk

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_3, © Springer-Verlag London Limited 2011

47

mailto:aa462@cam.ac.uk
mailto:jl221@cam.ac.uk
http://dx.doi.org/10.1007/978-0-85729-811-9_3

48 A. Aristidou and J. Lasenby

efficient than rotation matrices, making GA popular for applications in computer
graphics and robotics. A more detailed treatment of GA can be found in [2].

The CGA geometric representation and its algebraic richness offer great flexibil-
ity in the process of modelling virtual or mechanical objects. In this paper, a method
for solving the IK problem of a 3D human hand, which uses the CGA framework,
is presented. The model is highly constrained with both rotational and orientational
constraints, allowing motion only within a feasible set. Using data from a markered
optical motion capture system, the 3D hand pose was efficiently tracked and recon-
structed. It is important to note that this is not a system designed specifically for
the task of hand tracking and reconstruction, but rather to provide a framework for
many IK applications in computer vision and robotics. Both the IK solver and the
hand model are real-time implementable, and the system produces motion which is
smooth and natural.

3.2 Background

Inverse Kinematics is defined as the problem of determining a set of appropri-
ate joint configurations for which the end effectors move to desired positions as
smoothly, rapidly and as accurately as possible. Several models have been imple-
mented for solving the IK problem from different areas of study. A detailed review
of IK solvers is given in [3]. Most of the literature which uses CGA to address the
IK problem presents kinematic solutions which focus on the advantages that the
CGA model offers, rather than presenting a complete IK solver. For instance, [4]
gives a simple framework solution for a robot arm, underlining the generality and
the efficiency of the CGA mathematical model for solving the IK problem. Cor-
rochano and Kähler [5] used a language of points, lines and planes (which are later
replaced by spheres in [6]) to solve the IK problem of a specific robot arm. Similar
solutions were given by [7–10], where CGA was used to deal with forward kine-
matics, dynamics and projective geometry problems. In [11], a technique for the
combination of very efficient algorithms, based on two different optimisation ap-
proaches using Gaigen 2 and MAPLE, is presented. CGA therefore appears to be
a promising mathematical tool for computing the IK of a robot arm and solving
the problem of visually guided grasping. Recently, [12] described an application
of CGA to the analysis of a parallel manipulator with limited mobility. [13] gives
a brief introduction to CGA and describes basic geometric entities; it also gives a
synopsis of different IK framework solutions and grasping processes of a robot arm.
Finally, [14] proposed an optimised algorithm to provide IK solutions using recon-
figurable hardware, leading to very efficient implementations. In summary, most of
these methods are applied to the simple kinematic problems of a robot arm with 5
degrees of freedom (DoF). They mainly describe how to constrain the movement of
the arm to a feasible set within a framework rather than describing a solver itself. In
this paper we describe a heuristic algorithm that solves the IK problem in an iterative
fashion, akin to the popular CCD method [15]. FABRIK (Forward And Backward
Reaching Inverse Kinematics) is a reliable iterative algorithm that uses points, lines

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 49

and spheres to solve the IK problem. It divides the problem into two phases, a for-
ward and a backward reaching approach, and it can treat most of the joint types
and supports biomechanical constraints on chains with both single and multiple end
effectors. It is fast, computationally efficient and provides visually smooth results.

3.3 FABRIK: An Iterative Inverse Kinematics Solver

FABRIK uses the previously calculated positions of the joints to find the updates
in a forward and backward iterative manner. The proposed IK solver starts from
the last joint of the chain and works forwards, adjusting each joint along the way.
Thereafter, it works backwards in the same way, in order to complete a full iteration.

Therefore, assume that p1, . . . ,pn are the joint positions of a manipulator. For the
simple case where only a single end effector exists, take p1 as the root joint and pn

as the end effector. The target is t, and the initial base position is b. First calculate
the distances between each joint di = |pi+1 − pi | for i = 1, . . . , n − 1. Then, to
check whether the target is reachable or not, find the distance between the root and
the target, dist, and if this distance is smaller than the total sum of all the inter-joint
distances, dist <

∑n−1
1 di , the target is within reach; otherwise, it is unreachable.

If the target is within reach, a full iteration is constituted by two stages. In the first
stage, the algorithm estimates each joint position starting from the end-effector, pn,
moving inwards to the manipulator base, p1. So, let the new position of the end-
effector be the target position, p′

n = t. The new position of the (n− 1)th joint, p′
n−1,

is assigned as the nearest point on the sphere Σn−1, with centre the joint position p′
n

and radii the distance dn−1 from the joint position pn−1. Similarly, the new position
of the (n − 2)th joint, p′

n−2, is selected as the nearest point on sphere Σn−2, with
centre the joint position p′

n−1 and radii the distance dn−2 from the joint pn−2. The
algorithm continues until all new joint positions are calculated, including the root,
p′

1. The nearest point on a sphere from a point in space is clearly found by simply
taking a point along the line joining the centre of the sphere to the point, which has
distance from the centre equal to the sphere radius. An entirely CGA solution is also
given in Sect. 3.4.2.1.

A full iteration is completed when the same procedure is repeated but this time
starting from the root joint and moving outwards to the end effector. Thus, let the
new position for the first joint, p′′

1, be its initial position b. Then, the new joint
position p′′

2 is assigned as the nearest point on the sphere Σ1, with centre the p′′
1

and radii the distance d1 from the joint p′
2. This procedure is repeated for all the

remaining joints, including the end effector. FABRIK is illustrated in pseudo-code
in Algorithm 1, and a graphical representation of a full iteration of the algorithm is
demonstrated in Fig. 3.1.

The forward and backward procedure is then repeated for as many iterations as
needed, until the end effector is identical or close enough (to be defined) to the
desired target. FABRIK can easily handle end effector orientations and supports,
to the best of our knowledge, all chain classes. It can also cope with cases where
the model has multiple chains and end effectors and is applicable to problems with

50 A. Aristidou and J. Lasenby

Algorithm 1: A full iteration of the FABRIK algorithm using CGA.
Input: The joint positions pi for i = 1, . . . , n, the target position t and the

distances between each joint di = |pi+1 − pi | for i = 1, . . . , n − 1
Output: The new joint positions pi for i = 1, . . . , n.
% The distance between root and target1.1

dist = |p1 − t|1.2

% Check whether the target is within reach1.3

if dist > d1 + d2 + · · · + dn−1 then1.4

% The target is unreachable1.5

for i = 1, . . . , n − 1 do1.6

% Find the nearest point on sphere, with centre the joint position pi and radius1.7

the distance di , from a point is space, t
pi+1 = NearestPointSphere(pi , di , t);1.8

end1.9

else1.10

% The target is reachable; thus, set as b the initial position of the joint p11.11

b = p11.12

% Check whether the distance between the end effector pn and the target t is greater1.13

than a tolerance.

dif A = |pn − t|1.14

while dif A > tol do1.15

% STAGE 1: FORWARD REACHING1.16

% Set the end effector pn as target t1.17

pn = t1.18

for i = n − 1, . . . ,1 do1.19

% Find the nearest point on sphere, with centre the joint position pi+1 and1.20

radius the distance di , from a point is space, pi

pi = NearestPointSphere(pi+1, di,pi);1.21

end1.22

% STAGE 2: BACKWARD REACHING1.23

% Set the root p1 its initial position.1.24

p1 = b1.25

for i = 1, . . . , n − 1 do1.26

% Find the nearest point on sphere, with centre the joint position pi and1.27

radius the distance di , from a point is space, pi+1

pi = NearestPointSphere(pi , di ,pi+1);1.28

end1.29

dif A = |pn − t|1.30

end1.31

end1.32

1.33

% Where the function NearestPointSphere(X,Y,Z), finds the nearest point on a sphere1.34

from a point in space. X is the sphere’s centre, Y is the sphere’s radii and Z is the point

in space.

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 51

Fig. 3.1 A full iteration of FABRIK for the case of a single target and 4 joints using CGA. (a) The
initial position of the manipulator and the target, (b) move the end effector p4 to the target, (c) find
the joint p′

3 which is the intersection of the sphere Σ3 and the line l3 which passes through the
points p′

4 and p3, (d) continue the algorithm for the rest of the joints, (e) the second stage of the
algorithm: move the root joint p′

1 to its initial position, (f) repeat the same procedure but this time
start from the base and move outwards to the end effector. The algorithm is repeated until the
position of the end effector reaches the target or gets sufficiently close

closed loops. A reliable method for incorporating constraints is presented in [16];
the main idea is the repositioning and reorientation of the target to be within the
allowed range of motion. In this paper we give details of how these constraints
can be applied to a hand model, restricting the hand motion to a feasible set. It is
worth noting that FABRIK, as described in Fig. 3.1, can be implemented simply
by taking distances along lines rather than intersecting with spheres [16]. However,
when we wish to incorporate constraints, we often need the sphere-line information;
so we choose to work entirely in this unified framework. Also, the CGA framework
offers several algorithm optimisations such as for cases where the ‘end effector’ is
not positioned at the end of the chain (i.e. it is a leaf). For instance, assume that
the joint positions pi and pi−2 are known and that we want to estimate the joint
position pi−1. This can be done by finding the intersection of the spheres Σ1 and
Σ2 with centres the known joint positions pi and pi−2 and radii the distances di =
|pi −pi−1| and di−2 = |pi−2 −pi−1|, respectively. If the intersection is a circle, then
the estimated joint position can be assigned as the nearest point on that circle from
its previous position (as described in Sect. 3.4.2.2). If the intersection is a single

52 A. Aristidou and J. Lasenby

Fig. 3.2 The hand’s model
geometry used in our
implementation

point, the estimated joint position is assumed to be that point; otherwise, if the two
spheres do not intersect, the estimated joint position is equal to pi−1 = pi+pi−2

2 .
Another simple optimisation is the direct construction of a line pointing towards the
target, when the latter is unreachable. In that case, each joint pi is assigned to be the
nearest point on the sphere, with centre the previous joint pi−1 and radii the distance
di−1 from the target.

3.4 Using FABRIK for Hand Pose Tracking

In this section, an example of FABRIK implementation and how it performs on
hand pose tracking is presented. The hand rotational and orientational limitations
have been incorporated using CGA. The proposed approach is an example of object
modelling for kinematic solutions, and we note that it can be adjusted to solve a
variety of different modelling problems.

3.4.1 The Hand Geometry

It is assumed that the hand geometry, meaning the initial joint configuration of the
hand, is known a priori. An example of a hand model is graphically represented in
Fig. 3.2. The proposed hand model consists of 25 joints and has in total 25 DoFs.
The end effector positions are captured using an optical motion capture rig, such
as the Phasespace Impulse System [17]. Since our hand model does not have a
mesh which defines its external shape, constraints such as self collisions are not
considered here. The markers are identified (e.g. in the Phasespace system, each

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 53

LED marker is pulsed at a different frequency) so that it is known a priori on which
finger each marker is placed. It is also important to know the orientation of the hand
in order to efficiently incorporate constraints. This can be achieved by attaching
two extra markers at specific positions, p and q , on the back of the hand (reverse
palm). Assuming that the palm is always flat, we can find the plane describing the
orientation of the hand using p, q and the position of the base root, r , which also
lies on the palm plane. For simplicity, markers p and q can be placed at the joint
positions F1,2 and F4,2 respectively, as shown in Fig. 3.2.

Before employing the IK solver, it is crucial to find the fingers’ orientations, the
chain roots and the end effectors for each chain; the target positions are assumed
to be known since they are tracked by the motion capture system. The procedure is
simple. Firstly, we estimate the hand orientation; thereafter, we calculate the palm
joints and the finger orientations at each time step. When each finger orientation
is known, the finger joints at the previous time step are translated and rotated in
such a way that all joints belong to the current finger plane. Finally, a constrained
version of FABRIK, with rotational limitations, is incorporated to fit the joints of
each finger. This procedure is given in detail in the following paragraphs.

The first step is to find the hand orientation; hence, by accepting that the hand
plane Φx is similar to the palm plane and that the markers p, q and r are lying
on that plane, the hand orientation, meaning the plane Φx , can be estimated. There-
fore,

P = 1

2

(
p2n∞ + 2p − n̄

)

Q = 1

2

(
q2n∞ + 2q − n̄

)
(3.1)

R = 1

2

(
r2n∞ + 2r − n̄

)

where P , Q and R are the 5D null vectors representing points p, q and r , respec-
tively, and n∞ and n̄ are the null vectors in CGA.1 The plane Φx is given by

Φx = P ∧ Q ∧ R ∧ n∞ = 〈〈〈PQ〉2R
〉
3n∞

〉
4 (3.2)

Note that the form given on the right-hand side of (3.2), and other relevant equations,
is useful for implementation purposes and so is included here.

Calculating the Palm Joints The next step is to incorporate constraints to obtain
other palm joints. Thus, by assuming that the inter-joint distances (for the joints Fi,1
where i = 1, . . . ,5 and Fj,2 where j = 1, . . . ,4) are fixed over time and that all
these joints lie on the palm plane, we can easily locate them using basic geometric
entities such as planes, circles and spheres. An example of palm constraints is given

1Editorial note: Note here that in this chapter CGA equations are given in terms of n∞ and n̄,
where n̄ = −2no .

54 A. Aristidou and J. Lasenby

Fig. 3.3 The palm plane
constraints: the hand plane
can be calculated using the
marker positions P , Q and R,
accepting that the markers lie
on that plane and that the
hand and palm planes are
similar. The rest of the palm
joints can be estimated,
assuming that the inter-joint
distances remain constant
over time, by intersecting the
spheres Σp and Σq with
centres at the marker
positions P and Q and radii
of the distance between their
centre and the joint position
we are looking for

in Fig. 3.3. For instance, the joint position we are working on can be estimated
by intersecting the spheres with centres being the marker positions p and q and
radii being the distance between the marker and that joint position (taken from the
model). Therefore, find the sphere with its centre at the marker position P and radius
equal to the distance between the marker P and the joint we are working on

Σp =
(

P − 1

2
ρ2

1n∞
)

I (3.3)

where ρ is the sphere radius. Similarly, find the sphere with centre the marker posi-
tion Q and radius equal to the distance between the marker Q and the joint we are
working on

Σq =
(

Q − 1

2
ρ2

2n∞
)

I (3.4)

The intersection of the two spheres gives a circle or a single point or no intersection.
The meet between the two spheres is given by

C = Σp ∨ Σq = [〈ΣpΣq〉2
]∗ (3.5)

• If C2 > 0, then C is a circle. In that case, the possible solutions are given by
intersecting the circle C and the palm plane Φx :

B = C ∨ Φx = [〈CΦx〉3
]∗ (3.6)

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 55

– If B2 > 0, the meet between C and Φx gives two points which can be extracted
via projectors, as described in [18]. The new joint position is assigned as the
point that is closer to the previous joint position (at time k − 1).

– If B2 = 0, the intersection is a single point X = Bn∞B .
– If B2 < 0, the intersection does not exist. For that instance, the new joint po-

sition is then taken as the nearest point on circle, C, from the previous joint
position (at time k − 1, see Sect. 3.4.2.2).

• If C2 = 0, the intersection is a single point X = Cn∞C.
• If C2 < 0, the two spheres do not intersect. In that case, the final joint position is

given by averaging the distance between the two markers, x = (p + q)/2.

Calculating the Finger Joints In order to estimate the finger joints, we need to
find the finger planes Φi for i = 1, . . . ,4. Each Φi can be calculated using the known
joint positions Fi,2, the marker positions Fi,5 and by assuming that they are perpen-
dicular to the palm plane Φx (note that this does not hold for the thumb plane Φ5).
Since both points from each finger are known (the motion capture system tracks
the end effector positions Fi,5, and the finger roots Fi,2 lie on the palm plane with
constant distance from the attached markers p and q , as explained in previous para-
graphs), each finger plane can be estimated at the current time frame. The vector
that is perpendicular to the hand plane Φx is given by

n̂ = Φ∗
x − 1

2

(
Φ∗

x · n̄)
n∞ (3.7)

as explained in [18]. The finger planes can then be calculated as

Φi = Fi,2 ∧ Fi,5 ∧ n̂ ∧ n∞ = 〈〈〈Fi,2Fi,5〉2n̂
〉
3n∞

〉
4 for i = 1, . . . ,4 (3.8)

The thumb orientation Φ5 can be estimated using the marker position F5,4 and the
joint positions F1,2 and F5,2 that lie on the palm, assuming that when the thumb
bends to the ventral side of the palm, it always points at the joint F1,2 (approximately
true in practice).

The next step is to estimate the rotation between the previous and the current
frame of each finger plane. This can be done using rotors; the rotor R which ex-
presses the rotation between the plane in the previous frame and the plane in the
current frame, for each finger, can be found using the closed-form expression given
in [19].2 Then each finger joint at time k − 1 is translated and rotated in such a way
that all joints of a given finger lie on the plane of the current frame k, as demon-
strated in Figs. 3.4 and 3.5. Hence,

F̂ k
i,j = RFk−1

i,j R̃ (3.9)

2Editorial note: This is essentially (4.2) for n = 3.

56 A. Aristidou and J. Lasenby

Fig. 3.4 The joint positions
at times k − 1 and k. Each
finger joint at time k − 1
needs to be rotated in such a
way that all joints of that
finger lie on the plane of the
current frame k

where i = 1, . . . ,4 and j = 3,4,5 (except for the thumb where i = 5 and j =
2,3,4).

All joints now lie on plane Φk
i . Lastly, FABRIK is applied to each finger chain,

assuming that the root of the chain is Fk
i,2, the end effector is the rotated point F̂ k

i,5,

and the target is the current marker position Fk
i,5, as shown in Fig. 3.5. The inter-

joint distances are constant over time; thus, for computational efficiency, they can be
calculated and stored at the first frame. It is important here to note that the marker
occlusion problem is considered solved using constrained prediction algorithms,
such as [20].

The resulting posture can be further improved in accuracy and naturalness by
incorporating properties of the fingers, muscles, skin and individual joints via con-
straints [21].

3.4.2 Trigonometric Solutions

This section presents trigonometric solutions, using CGA, to problems which appear
during the implementation of the proposed methodology.

3.4.2.1 Nearest Point on a Sphere from a Point in Space
This section shows how to calculate the nearest point on a sphere from a point in
space using CGA. Assume that a sphere has centre c and radius ρ. The sphere Σ1
can be expressed as a blade in CGA as follows:

Σ1 =
(

c − 1

2
ρ2n∞

)

I (3.10)

where c = 1
2c2n∞ + c − n̄

2 .
Assume a point in space q . In order to find the nearest point on the sphere from

that point, we need to find the intersection of the line L1 that passes through the
point q and the sphere centre c. Thus,

L1 = Q ∧ c ∧ n∞ = 〈〈Qc〉2n∞
〉
3 (3.11)

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 57

Fig. 3.5 The current joint positions, after rotating them in order to lie on the current finger
plane Φk

i . The problem of orientation is therefore solved, and FABRIK can then be utilised as-

suming that the root of the chain is Fk
i,2, the end effector is the point F̂ k

i,5, and the target is the

current marker position Fk
i,5

where Q = H(q) is the Hestenes mapping of q . The intersection between the line
L1 and the sphere Σ1 always returns two possible solutions, which are given by the
bivector X1 ∧ X2.

X1 ∧ X2 = L1 ∨ Σ1 (3.12)

Finally, the vectors X1 and X2 can be extracted from X1 ∧ X2 using projectors.
Then, the nearest point on the sphere is assigned as the point that returns the mini-
mum distance from the point in space.

We note here that although the nearest point on a sphere from a point in space can
be found very easily using distance along lines, because we are working entirely in
the CGA framework (in order to easily incorporate constraints), it is generally more
computationally efficient to do all calculations in CGA.

X = arg
(
max(X1 · X,X2 · X)

)
(3.13)

3.4.2.2 Nearest Point on a Circle from a Point in Space
This section describes how to find the nearest point on a circle from a point in space.
In particular, the minimum distance on a circle from a point in space is related to
the projection of that point onto the plane Φ of the circle. This can be achieved by
reflecting the point in the plane and finding the mid-point of the reflected and the
original point. Hence, let the circle C = H(b) ∧ H(c) ∧ H(d), where b, c and d are
points that lie on the circle. The centre c of the circle C can be calculated as

c = Cn∞C (3.14)

and the plane Φ of the circle can be formulated as

Φ = C ∧ n∞ = 〈Cn∞〉4 (3.15)

Having the plane Φ and the point X = H(x) in space, the nearest point on the
circle can be found by reflecting that point in the plane Φ .

58 A. Aristidou and J. Lasenby

Fig. 3.6 The nearest point on circle to point in space. The point X is projected on the circle’s
plane Φ . A line is then formed through the midpoint of X and its projected counterpart and the
centre of the circle. The intersection between the line and the circle returns two possible solutions;
the one that is shorter to the point X is chosen

X′ = ΦXΦ (3.16)

The mid-point XP is then calculated as

X′P = XP + αn∞ = H

(
1

2

(
H−1(X′) + x

)
)

(3.17)

Then, a line, L, is formed through this midpoint and the centre of the circle,

L = XP ∧ c ∧ n∞ (3.18)

The intersection between line L and circle C will return a bivector, A ∧ B , which
represents the shortest and longest distances on the circle from the point in space.
The vectors X1 and X2 can be extracted from X1 ∧X2 using projectors. The nearest
point is then selected using a simple distance comparison method. This method is
also illustrated in Fig. 3.6.

(X1,X2) = L ∨ C

X = arg
(
max(X1 · X,X2 · X)

) (3.19)

3.5 Experimental Results

Experiments were carried out using a 10 camera Phasespace motion capture system,
capturing data at 100 Hz [17]. The implemented methodology was able to process
up to 70 frames per second, using MATLAB [22]. Our dataset comprises mark-
ered motion capture data; data captured using colour video cameras are also used
to compare the reconstruction quality between the estimated and the true hand pos-
tures. The reconstructed hand postures were visualised using a mesh deformation
algorithm.

The proposed method is real-time implementable, requiring only 1.43 ms per
frame for tracking and fitting 25 joints. FABRIK is able to fit the joints and recon-
struct the hand accurately; the rotational and orientational constraints ensure that

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 59

Fig. 3.7 An example of hand reconstruction using our methodology at a frame rate of 100 Hz.
(a) View of the hand from RGB camera 1, (b) a different view of the hand from RGB camera 2
and (c) the final visualised posture. The resulting poses are visually natural and biomechanically
correct

each finger movement remains normal without showing asymmetries, or irregular
bends and rotations.

The implemented system can smoothly track the hand movements. The recon-
struction quality can be checked visually by comparing the generated 3D hand an-
imations with the data captured using a colour video camera, as seen in Fig. 3.7.
It is difficult to illustrate the reconstruction quality in still images, but the resulting
motion does not suffer from oscillation or discontinuities, and each finger smoothly
moves to the target.

Despite the accuracy in performance, the resulting postures of our approach are
not unique; several possible poses could result from the 3D articulated hand track-
ing. However, the advantages of this method are its efficiency and ability to return

60 A. Aristidou and J. Lasenby

natural and feasible motion, which meets the user constraints, with low computa-
tional cost. It is also important to note here that FABRIK results in poses which are
closely related to previous states. Therefore, the final joint configuration might be
different when the IK problem is solved with the end effectors in different initial
positions but with similar final states. Nevertheless, these differences are minimal
causing only a small decrease in performance.

3.6 Conclusions and Future Work

In this paper, we presented an iterative Inverse Kinematics solver that was imple-
mented using CGA. Rotational and orientational constraints were then incorporated
for hand modelling; using a minimum number of available markers, we were able
to track the 25 DoF hand relying on optical motion capture data. One labelled opti-
cal marker was attached to the end of each finger, treated as an end effector, and 3
more markers were placed at strategic positions on the hand reverse-palm to help us
identify the root and orientation of the hand. The proposed methodology produced
smooth and natural hand postures over time; the required processing time remained
low enabling an effective real-time hand motion tracking and reconstruction system.
The results were precise, producing visually natural, smooth and biomechanically
correct movements, without oscillations or discontinuities.

This application exploits the advantages of CGA for incorporation of constraints
in IK problems and proves that it is a useful mathematical tool which can be suc-
cessfully used for applications in computer vision, graphics and robotics. In gen-
eral, CGA gives us the ability to describe algorithms in a geometrically intuitive
and compact manner. More particularly, it simplifies the mathematical model of the
IK solver, since basic entities, such as spheres, lines, planes and circles, are simply
represented by algebraic objects. In addition, the structure and elegance of CGA
leads to low computational cost and real-time performance.

In future work, a more sophisticated model will be implemented which takes
into consideration, in addition to the joint rotational and orientational restrictions,
physiological constraints such the flexion, inertia, abduction, the finger’s intradigital
and transdigital correlation, the rigidity and the friction of the hand, as described
in [21].

3.7 Exercises

3.1 What is the complexity of a simple unconstrained version of FABRIK for a
six-joint kinematic chain?

3.2 Similarly to finding the nearest point on a circle from a point in space, find
trigonometric solutions for: (a) the nearest point on a line from a sphere, (b) the
nearest point on a line from a circle.

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 61

3.3 Describe a model with joint constraints for a human arm using the FABRIK
Inverse Kinematics algorithm and CGA as the mathematical framework (hint: as-
sume that the shoulder and the joint connecting the palm with the arm are ball and
socket joints with rotational and orientation limits, and that elbow is a hinge joint.
For simplicity, the hand should be considered as a solid limb segment).

References

1. Hestens, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for
Mathematics and Physics. Reidel, Dordrecht (1984)

2. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge (2003)

3. Aristidou, A., Lasenby, J.: Inverse kinematics: a review of existing techniques and introduction
of a new fast iterative solver. Cambridge University Department of Engineering Technical
Report, CUED/F-INFENG/TR-632 (2009)

4. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Morgan Kaufmann, San Mateo (2009)

5. Bayro-Corrochano, E., Kähler, D.: Motor algebra approach for computing the kinematics of
robot manipulators. J. Robot. Syst. 17(9), 495–516 (2000)

6. Bayro-Corrochano, E.: Robot perception and action using conformal geometric algebra. In:
Handbook of Geometric Computing, pp. 405–458, Chap. 13. Springer, Berlin (2005)

7. Zamora, J., Bayro-Corrochano, E.: Inverse kinematics, fixation and grasping using conformal
geometric algebra. In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS ’04), vol. 4, pp. 3841–3846 (2004). doi:10.1109/IROS.2004.1390013

8. Hildenbrand, D.: Tutorial: Geometric computing in computer graphics using conformal geo-
metric algebra. Comput. Graph. 29(5), 795–803 (2005)

9. Zamora, J., Bayro-Corrochano, E.: Kinematics and grasping using conformal geometric alge-
bra. In: Lenarčič, J., Roth, B. (eds.) Advances in Robot Kinematics, pp. 473–480. Springer,
Berlin (2006)

10. Hildenbrand, D., Zamora, J., Bayro-Corrochano, E.: Inverse kinematics computation in com-
puter graphics and robotics using conformal geometric algebra. Adv. Appl. Clifford Algebras
18, 699–713 (2008)

11. Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime perfor-
mance for inverse kinematics algorithms using conformal geometric algebra. In: Proceedings
of Eurographics Conference, 2006

12. Tanev, T.K.: Geometric algebra approach to singularity of parallel manipulators with limited
mobility. In Lenarcic, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and De-
sign, pp. 39–48. Springer, Dordrecht (2008)

13. Bayro-Corrochano, E., Zamora, J.: Differential and inverse kinematics of robot devices using
conformal geometric algebra. Robotica 25(1), 43–61 (2007)

14. Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm based
on conformal geometric algebra (using reconfigurable hardware). In: Proceedings of the 3rd
International Conference on Computer Graphics Theory and Applications, Madeira, Portugal,
2008

15. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinemat-
ics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)

16. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the inverse kinematics problem.
Graph. Models 73(5), 243–260 (2011)

17. PhaseSpace Inc: Optical motion capture systems. http://www.phasespace.com
18. Lasenby, A.N., Lasenby, J., Wareham, R.: A covariant approach to geometry using geo-

metric algebra. Cambridge University Department of Engineering Technical Report, CUED/
F-INFENG/TR-483 (2004)

http://dx.doi.org/10.1109/IROS.2004.1390013
http://www.phasespace.com

62 A. Aristidou and J. Lasenby

19. Lasenby, J., Fitzgerald, W.J., Lasenby, A.N., Doran, C.J.L.: New geometric methods for com-
puter vision: an application to structure and motion estimation. Int. J. Comput. Vis. 26(3),
191–213 (1998)

20. Aristidou, A.: Tracking and modelling motion for biomechanical analysis. PhD Thesis, Uni-
versity of Cambridge, Cambridge, UK (October 2010)

21. Kaimakis, P., Lasenby, J.: Physiological modelling for improved reliability in silhouette-
driven gradient-based hand tracking. In: Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition, Miami, USA, 25 June 2009, pp. 19–26

22. The Mathworks—MATLAB and Simulink for technical computing. http://www.mathworks.
com

http://www.mathworks.com
http://www.mathworks.com

