
Graphical Models 73 (2011) 243–260
Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier .com/locate /gmod
FABRIK: A fast, iterative solver for the Inverse Kinematics problem q

Andreas Aristidou ⇑, Joan Lasenby
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
a r t i c l e i n f o

Article history:
Received 12 February 2010
Received in revised form 24 March 2011
Accepted 9 May 2011
Available online 15 May 2011

Keywords:
Human animation
Inverse Kinematics
Joint configuration
Motion reconstruction
1524-0703/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.gmod.2011.05.003

q This paper has been recommended for acceptanc
⇑ Corresponding author. Fax: +44 1223332662.

E-mail address: aa462@cam.ac.uk (A. Aristidou).
a b s t r a c t

Inverse Kinematics is defined as the problem of determining a set of appropriate joint con-
figurations for which the end effectors move to desired positions as smoothly, rapidly, and
as accurately as possible. However, many of the currently available methods suffer from
high computational cost and production of unrealistic poses. In this paper, a novel heuristic
method, called Forward And Backward Reaching Inverse Kinematics (FABRIK), is described
and compared with some of the most popular existing methods regarding reliability, com-
putational cost and conversion criteria. FABRIK avoids the use of rotational angles or matri-
ces, and instead finds each joint position via locating a point on a line. Thus, it converges in
few iterations, has low computational cost and produces visually realistic poses. Con-
straints can easily be incorporated within FABRIK and multiple chains with multiple end
effectors are also supported.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

This paper addresses the problem of manipulating artic-
ulated figures in an interactive and intuitive fashion for the
design and control of their posture. This problem finds its
application in the areas of robotics, computer animation,
ergonomics and gaming. In computer graphics, articulated
figures are a convenient model for humans, animals or
other virtual creatures from films and video games. Inverse
Kinematics (IK) has also been used in rehabilitation medi-
cine in order to observe asymmetries or abnormalities. The
most popular method for animating such models is mo-
tion-capture; however, despite the availability of highly
sophisticated techniques and expensive tools, many prob-
lems appear when dealing with complex figures. Most vir-
tual character models are very complex; they are made up
of many joints giving a system with a large number of de-
grees of freedom, thus, it is often difficult to produce a real-
istic character animation.
. All rights reserved.

e by Jarek Rossignac.
Inverse Kinematics is a method for computing the pos-
ture via estimating each individual degree of freedom in
order to satisfy a given task that meets user constraints;
it plays an important role in the computer animation and
simulation of articulated figures. This paper presents a
new heuristic iterative method, Forward And Backward
Reaching Inverse Kinematics (FABRIK), for solving the IK
problem in different scenarios. FABRIK uses a forward
and backward iterative approach, finding each joint posi-
tion via locating a point on line. FABRIK has been utilised
in highly complex systems with single and multiple tar-
gets, with and without joint restrictions. It can easily han-
dle end effector orientations and support, to the best of our
knowledge, all chain classes. A reliable method for incorpo-
rating constraints is also presented and utilised within
FABRIK. The proposed method retains all the advantages
of FABRIK, producing visually smooth movements without
oscillations and discontinuities. Several experiments have
been implemented for comparison purposes between the
most popular manipulator solvers, including multiple end
effectors with multiple tasks, and highly constrained
joints. The proposed algorithm is very efficient both in
simple and complex problems resulting in similar or even
better poses than highly sophisticated methods, requiring

http://dx.doi.org/10.1016/j.gmod.2011.05.003
mailto:aa462@cam.ac.uk
http://dx.doi.org/10.1016/j.gmod.2011.05.003
http://www.sciencedirect.com/science/journal/15240703
http://www.elsevier.com/locate/gmod

244 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
less processing time and fewer iterations to reach the tar-
get. Another important advantage of the proposed method-
ology is the simplicity of the algorithm, which enables easy
configuration to any IK problem.
2. Background and motivation

The production of realistic and plausible motions re-
mains an open challenge within the robotics and anima-
tion communities. Several models have been
implemented for solving the IK problem from many differ-
ent areas of study. Zhao and Badler [1] poses the IK task as
a problem of finding a local minimum of a set of non-linear
equations, defining Cartesian space constraints. However,
the most popular numerical approach is to use the Jacobian
matrix to find a linear approximation to the IK problem.
The Jacobian solutions linearly model the end effectors’
movements relative to instantaneous system changes in
link translation and joint angle. Several different method-
ologies have been presented for calculating or approximat-
ing the Jacobian inverse, such as the Jacobian Transpose,
Damped Least Squares (DLS), Damped Least Squares with
Singular Value Decomposition (SVD-DLS), Selectively
Damped Least Squares (SDLS) and several extensions [2–
7]. Jacobian inverse solutions produce smooth postures;
however most of these approaches suffer from high com-
putational cost, complex matrix calculations and singular-
ity problems. An alternative approach is given by Pechev in
[8] where the Inverse Kinematics problem is solved from a
control prospective. This approach is computationally
more efficient than the pseudo-inverse based methods
and does not suffer from singularity problems.

The second family of IK solvers is based on Newton
methods. These algorithms seek target configurations
which are posed as solutions to a minimisation problem,
hence they return smooth motion without erratic disconti-
nuities. The most well known methods are Broyden’s
method, Powell’s method and the Broyden, Fletcher, Gold-
farb and Shanno (BFGS) method [9]. However, the Newton
methods are complex, difficult to implement and have high
computational cost per iteration.

A very popular IK method is the Cyclic Coordinate Des-
cent (CCD) algorithm, which was first introduced by Wang
and Chen [10] and then biomechanically constrained by
Welman [11]. CCD has been extensively used in the com-
puter games industry [12] and has recently been adapted
for protein structure prediction [13]. CCD is a heuristic iter-
ative method with low computational cost for each joint
per iteration, which can solve the IK problem without ma-
trix manipulations; thus it formulates a solution very
quickly. However, CCD has some disadvantages; it can suf-
fer from unrealistic animation, even if manipulator con-
straints have been added, and often produces motion
with erratic discontinuities. It is designed to handle serial
chains, thus, it is difficult to extend to problems with mul-
tiple end effectors. Unzueta et al. [14] describes a Sequen-
tial IK (SIK) solver, and is a direct extension of Boulic et al.
[15], in that its inputs are end effector positions, such as
wrists, ankles, head and pelvis, which are used to find
the human pose. The IK problem is then solved sequen-
tially using simple analytic-iterative IK algorithms (CCD),
in different parts of the body, in a specific order. Kulpa
and Multon [16] also adopted the CCD kinematic algorithm
and solved its crucial problem of resulting unnatural poses.
The proposed extension in [16] is able to solve problems
with humanoid hierarchy, dividing the whole body into
groups of joints near an end effector (typically head, trunk,
arms and legs). In order to satisfy the desired centre of
mass, the lightest group moves first, adjusting its centre
of mass by changing the length of the limb and rotating
it (assuming it as a rigid body).

Recently, Courty and co-workers [17,18] proposed a
Sequential Monte Carlo Method (SMCM) and particle filter-
ing approach respectively. The proposed particle IK solver
treats the character skeleton as a set of 3 DoFs particles
having inter-length constraints. An iterative constrainer,
with various pre-conditions and parameters, is then ap-
plied over the particles, tuning its behaviour both statically
and dynamically. The final particle positions and the length
constraints are then used to reconstruct the resulting DoFs
of the body. Neither method suffers from matrix singular-
ity problems and both perform reasonably well. However,
these statistical methods have high computational cost.
Grochow et al. [19] presents a style-based IK method
which is based on a learned model of human poses. Given
a set of constraints, the proposed system can produce, in
real-time, the most likely pose satisfying those constraints.
The model has been trained on different input data that
leads to different styles of IK; it can generate any pose,
but poses are highly related to those which are most sim-
ilar to the space of poses in the training data. Sumner and
co-workers [20,21] used mesh-based IK techniques to con-
figure the animated shapes. Mesh-based IK learns a space
of natural deformations from example meshes. Using the
learned space, they generate new shapes that respect the
deformations exhibited by the examples, and satisfy vertex
constraints imposed by the user. However, these methods
require an off-line training procedure, their results are
highly dependent on the training data and limited only
to those models and movements on which the system
has been trained.

The Triangulation algorithm [22] is an IK solver that
uses the cosine rule to calculate each joint angle, starting
at the root of the kinematic chain and moving outward to-
wards the end effector. Although it can reach the target in
just one iteration, having low computational cost, its re-
sults are often visually unnatural. The joints close to the
end effector are usually in a straight line, emphasising
the rotation on the joints neighbouring the root. The Trian-
gulation IK method can only be applied to problems with a
single end effector and does not support imposed joint lim-
its. An improved version is given in [23] where the n-link
IK problem is reduced to a two-link problem in which each
link is rotated at most once in an attempt to reach the tar-
get position.

Brown et al. [24] presents a real-time method which
uses a ‘Follow-the-Leader’ (FTL) non-iterative technique
which is similar to each individual iteration of FABRIK.
While FTL was specifically designed for rope simulation,
it can be applied to manipulate kinematic chains (ball-
and-socket joints connected by rigid links). Since FTL does

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 245
not work in an iterative fashion, the authors cope with
node constraints (for example the root position is fixed,
as in the IK definition) by averaging the results of FTL
(intermediate nodes) in each direction. However, the aver-
aging of the results induces a variation of the segment
lengths and produces, in some cases, unnatural poses.
Although similar to FABRIK in its basic structure, the FTL
algorithm has not been extended to support joint con-
straints and orientations (these are largely superfluous in
rope simulation), nor has it been applied to cases where
multiple end effectors exist.

3. The articulated body model

A rigid multibody system consists of a set of rigid ob-
jects, called links, connected together by joints. A joint is
the component concerned with motion; it permits some
degree of relative motion between the connected seg-
ments. Virtual body modelling is important for human pos-
ture control. A well constrained model can restrict
postures to a feasible set, therefore allowing a more realis-
tic motion. Most models assume that body parts are rigid,
although this is just an assumption approximating reality.
The skeletal structure is usually modeled as a hierarchy of
rigid segments connected by joints, each defined by their
length, shape, volume and mass properties.

A manipulator such as a robot arm or an animated
graphics character is modelled as a chain composed of rigid
links connected at their ends by rotating joints. Any trans-
lation and/or rotation of the i-th joint affects the transla-
tion and rotation of any joint placed later in the chain.
The chains can be formalised as follows: All joints with
no children are marked as end effectors; a chain can be built
for each end effector by moving back through the skeleton,
going from parent to parent, until the root (the start of the
chain) is reached. By definition, in the IK problem, the root
joint is assumed fixed but methods can generally cope with
translation of the root.

Algorithm 1. A full iteration of the FABRIK algorithm
Input: The joint positions pi for i = 1, . . . ,n, the
target
position t and the distances between each
joint
di = jpi+1 � pij for i = 1,. . .,n � 1.

Output: The new joint positions pi for
i = 1, . . . ,n.
1.1
 % The distance between root and target

1.2
 dist = jp1 � tj

1.3
 % Check whether the target is within reach

1.4
 if dist > d1 + d2 +. . .+ dn�1 then

1.5
 % The target is unreachable

1.6
 for i = 1, . . . ,n � 1 do

1.7
 % Find the distance ri between the target t and

the joint

position pi
1.8
 ri = jt � pij

1.9
 ki = di/ri
1.10
 % Find the new joint positions pi.

1.11
 pi+1 = (1 � ki) pi + kit

1.12
 end

1.13
 else

1.14
 % The target is reachable; thus, set as b the

initial position of the

joint p1
1.15
 b = p1
1.16
 % Check whether the distance between the end
effector pn
and the target t is greater than a tolerance.

1.17
 difA = jpn � tj

1.18
 while difA > tol do

1.19
 % STAGE 1: FORWARD REACHING

1.20
 % Set the end effector pn as target t

1.21
 pn = t

1.22
 for i = n � 1, . . . ,1 do

1.23
 % Find the distance ri between the new joint

position

pi+1 and the joint pi
1.24
 ri = jpi+1 � pij

1.25
 ki = di/ri
1.26
 % Find the new joint positions pi.

1.27
 pi = (1 � ki) pi+1 + kipi
1.28
 end

1.29
 % STAGE 2: BACKWARD REACHING

1.30
 % Set the root p1 its initial position.

1.31
 p1 = b
1.32
 for i = 1,. . .,n � 1 do

1.33
 % Find the distance ri between the new joint

position pi
and the joint pi+1
1.34
 ri = jpi+1 � pij

1.35
 ki = di/ri
1.36
 % Find the new joint positions pi.

1.37
 pi+1 = (1 � ki)pi + kipi+1
1.38
 end

1.39
 difA = jpn � tj

1.40
 end

1.41
 end
4. FABRIK: a new heuristic IK solution

In this section, a new heuristic method for solving the IK
problem, FABRIK, is presented. It uses the previously calcu-
lated positions of the joints to find the updates in a forward
and backward iterative mode. FABRIK involves minimising
the system error by adjusting each joint angle one at a
time. The proposed method starts from the last joint of
the chain and works forwards, adjusting each joint along
the way. Thereafter, it works backward in the same way,
in order to complete a full iteration. This method, instead
of using angle rotations, treats finding the joint locations
as a problem of finding a point on a line; hence, time and
computation can be saved.

Assume p1, . . . ,pn are the joint positions of a manipula-
tor. Also, assume that p1 is the root joint and pn is the end

246 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
effector, for the simple case where only a single end effec-
tor exists. The target is symbolised as t and the initial base
position by b. FABRIK is illustrated in pseudo-code in Algo-
rithm 1 and a graphical representation of a full iteration
with a single target and 4 joints is presented and explained
in Fig. 1.

First calculate the distances between each joint
di = jpi+1 � pij, for i = 1, . . . ,n � 1. Then, check whether the
target is reachable or not; find the distance between the
(a) (b)

(c) (d)

(e) (f)
Fig. 1. An example of a full iteration of FABRIK for the case of a single
target and 4 manipulator joints. (a) The initial position of the manipulator
and the target, (b) move the end effector p4 to the target, (c) find the joint
p03 which lies on the line l3 that passes through the points p04 and p3, and
has distance d3 from the joint p04, (d) continue the algorithm for the rest of
the joints, (e) the second stage of the algorithm: move the root joint p01 to
its initial position, (f) repeat the same procedure but this time start from
the base and move outwards to the end effector. The algorithm is
repeated until the position of the end effector reaches the target or gets
sufficiently close.
root and the target, dist, and if this distance is smaller than
the total sum of all the inter-joint distances, dist <

Pn�1
1 di,

the target is within reach, otherwise, it is unreachable. If
the target is within reach, a full iteration is constituted
by two stages. In the first stage, the algorithm estimates
each joint position starting from the end effector, pn, mov-
ing inwards to the manipulator base, p1. So, let the new po-
sition of the end effector be the target position, p0n ¼ t. Find
the line, ln�1, which passes through the joint positions pn�1

and p0n. The new position of the (n � 1)th joint, p0n�1, lies on
that line with distance dn�1 from p0n. Similarly, the new po-
sition of the (n � 2)th joint, p0n�2, can be calculated using the
line ln�2, which passes through the pn�2 and p0n�1, and has
distance dn�2 from p0n�1. The algorithm continues until all
new joint positions are calculated, including the root, p01.

Having in mind that the new position of the manipula-
tor base, p01, should not be different from its initial position,
a second stage of the algorithm is needed. A full iteration is
completed when the same procedure is repeated but this
time starting from the root joint and moving outwards to
the end effector. Thus, let the new position for the 1st joint,
p001, be its initial position b. Then, using the line l1 that
passes through the points p001 and p02, we define the new po-
sition of the joint p002 as the point on that line with distance
d1 from p001. This procedure is repeated for all the remaining
joints, including the end effector. In cases where the root
joint has to be translated to a desired position, FABRIK
works as described with the difference that in the back-
ward phase of the algorithm, the new position of the root
joint, p001, will be the desired and not the initial position.

After one complete iteration, it is almost always the case
(observed empirically) that the end effector is closer to the
target. The procedure is then repeated, for as many itera-
tions as needed, until the end effector is identical or close en-
ough (to be defined) to the desired target. The unconstrained
version of FABRIK converges to any given chains/goal posi-
tions, when the total length of serial links is greater than
the distance to the target (the target is reachable). However,
if the target is not within the reachable area, there is a termi-
nation condition which compares the previous and the cur-
rent position of the end effector, and if this distance is less
than an indicated tolerance, FABRIK terminates its opera-
tion. Also, in the extreme case where the number of itera-
tions has exceeded an indicated value and the target has
not been reached, the algorithm is terminated (however,
we have never encountered such a situation).

Several optimisations can be achieved using Conformal
Geometric Algebra (CGA) [25,26] to produce faster results
and to converge to the final answer in fewer iterations;
CGA has the advantage that basic entities, such as spheres,
lines, planes and circles, are simply represented by alge-
braic objects. Therefore, a direct estimate of a missing joint,
when it is between 2 true positions, can be achieved by
intersecting 2 spheres with centres the true joint positions
and radii the distances between the estimated and the true
joints respectively; the new joint position will be taken as
the point on the circle (created by the intersection of the 2
spheres) nearest to the previous joint position. Another
simple optimisation is the direct construction of a line
pointing towards the target, when the latter is
unreachable.

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 247
The proposed method has all the advantages of existing
iterative heuristic algorithms. The computational cost for
each joint per iteration is low, meaning the solution is ar-
rived at very quickly. It is also easy to implement, since it
is simply a problem involving points, distances and lines
and always returns a solution when the target is in range.
It does not require complex calculations (e.g Jacobian or
Hessian matrix) or matrix manipulations (inversion or sin-
gular value decomposition), it does not suffer from singu-
larity problems and returns smooth motion without
erratic discontinuities.
Fig. 2. An example of a model figure with multiple end effectors and
multiple sub-bases.
4.1. FABRIK with multiple end effectors

In reality, most of the multibody models, such as hands,
human or legged bodies etc, are comprised of several kine-
matic chains, and each chain generally has more than 1
end effector. Therefore, it is essential for an IK solver to
be able to solve problems with multiple end effectors
and targets. The proposed algorithm can be easily ex-
tended to process models with multiple end effectors.
However, prior knowledge of the model, such as the sub-
base1 joints, and the number and structure of chains is
needed.

The algorithm is divided into two stages, as in the single
end effector case. In the first stage, the normal algorithm is
applied but this time starting from each end effector and
moving inwards to the parent sub-base. This will produce
as many different positions of the sub-base as the number
of end effectors connected with that specific sub-base. The
new position of the sub-base will then be the centroid of all
these positions. Thereafter, the normal algorithm should
be applied inwards starting from the sub-base to the
manipulator root. If there are more intermediate sub-
bases, the same technique should be used. In the second
stage, the normal algorithm is applied starting now from
the root and moving outwards to the sub-base. Then, the
algorithm should be applied separately for each chain until
the end effector is reached; if more sub-bases exist, the
same process is applied. The method is repeated until all
end effectors reach the targets or there is no significant
change between their previous and their new positions.
An example of a model figure having multiple end effectors
and sub-bases is presented in Fig. 2.

More sophisticated (and complex) models can be also
tackled. Extending the proposed algorithm to take into ac-
count the figure’s shape, constraints and properties, will
reduce the number of iterations needed to reach the target
and will return more feasible postures. For example, FAB-
RIK has been successfully applied to real-time hand track-
ing and reconstruction in motion capture [27,28].
4.2. FABRIK within closed loops

FABRIK can also cope with cases where the ‘‘end effec-
tor’’ is not positioned at the end of the chain (i.e. it is a leaf)
in the same way as for the sub-bases described in Section
1 A sub-base joint is a joint which connects 2 or more chains. A pre-
analysis of the body can determine exactly where the sub-bases are located.
4.1. The whole model could be divided into groups of joints
near the end effectors (such as head, trunk, arms and legs)
and then the body postures can be sequentially adapted in
a specific order, similarly to Unzueta et al. [14] and Kulpa
and Multon [16]. Obviously, the adaption hierarchy varies
between models. FABRIK has been successfully used within
closed loops of a humanoid, achieving real-time centre of
rotation correction in motion capture, under marker occlu-
sions [29].
4.3. Applying joint limits to FABRIK

Most legged body models are comprised of joints hav-
ing biomechanical constraints, which provide natural
restrictions on their motion. Such constraints are essential
in physical simulations, IK techniques and tracking in mo-
tion capture systems to reduce visually unrealistic
movements.

Several biomechanically and anatomically correct mod-
els have been presented that formalise the range of motion
of an articulated figure. These models are mainly charac-
terised by the number of parameters which describe the
motion space and are hierarchically structured. Because
of their complex nature, most of the proposed models are
simplified or approximated by more than one joint. The
most well-known models are: the shoulder model, a com-
plex model composed of 3 different joints [30–33]; the
spine model, a complex arrangement of 24 vertebrae (usu-
ally, for simplicity, the spine is modelled as a simple chain
of joints [34–37]); the hand model, this is the most versatile
part of the body comprising a large number of joints [38–
40]; the strength model, which takes account of the forces
applied from the skeletal muscles to the bones [34].

A joint is defined by its position and orientation and, in
the most general case, has 3 DoFs. A bone rotation can be
described by factoring it into two rotations: one ‘‘simple
rotation’’, termed here rotational (2 DoFs), that moves the
bone to its final direction vector, and another which we call

248 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
orientational (1 DoF), which represents the twist around
this final vector. Thus, the range of movement of a bone
can be controlled by dividing the joint restriction proce-
dure into two interconnected phases, a rotational and an
orientational phase, contributing equally to the joint
restrictions. The essential feature of a joint is that it per-
mits a relative motion between the two limbs it connects.
Most of the existing structure models, such as those de-
scribed above, use techniques which restrict the bone to
lie within the rotational and orientational limits of the
joint. Blow [41] proposes a loop hung in space, limiting
the range of motion of the bone to ‘‘reach windows’’ de-
scribed by star polygons. Wilhelms and Van Gelder [42]
present a 3D ‘‘reach cone’’ methodology using planes,
treating the joint limits in the same way as [41]. Korein
and co-workers [36,43] parameterise realistic joint bound-
aries of the ball-and-socket joint by decomposing the arbi-
trary orientation into two components and controlling the
rotational joint limits so they do not exceed their bounds.
Once a proper parametrisation is defined for each joint of
the articulated body, an animation engine is utilised.

Tolani et al. [44] presents analytical and numerical con-
straints suitable for anthropomorphic limbs; they treat the
limbs of 3D characters independently in closed forms
resulting in fast analytical solutions. However, analytic
solutions, in general, lack flexibility for under-constrained
instances. A pin-and-drag interface for articulated charac-
ters is presented in [45], where multiple-priority-levels
architectures for combining end effector and centre of
mass position control is illustrated.

In this section, a reliable methodology for incorporating
manipulator constraints is described using FABRIK. Since
FABRIK is iterative, the joint restrictions can be enforced
at each step just by taking the resultant orientation and
(a) (b)

(c)
Fig. 3. The target is re-positioned within the allowed range of motion
which is defined by the conic section. There are 3 types of joint restriction,
as described by the angles h1,. . .,h4: (a) a circle, (b) an ellipsoidal shape
and (c) a parabolic shape.
forcing it to stay within the valid range. FABRIK’s ability
to converge on an answer, if the target is within reach, is
not affected by any imposed joint limits.

The main idea behind this methodology is the re-posi-
tioning and re-orientation of the target to be within the al-
lowed range bounds; ensuring that these restrictions are
always satisfied means a more feasible posture can be
achieved. This can be accomplished by checking if the tar-
get is within the valid bounds, at each step of FABRIK, and
if it is not, to guarantee that it will be moved accordingly.
In contrast to most existing techniques for joint con-
straints, the proposed methodology simplifies the 3D prob-
lem into a 2D problem, meaning that the complexity and
the required processing time is reduced. In this section, a
joint restriction methodology is presented for the general
case of a ball and socket joint; this example should be con-
sidered as an illustration of how joint or model constraints
can be incorporated within FABRIK. Similar techniques can
be easily adopted to limit different joint models.

Assume we have a ball-and-socket joint with orienta-
tional limits described by the rotor R and rotational limits
described by the angles h1,. . .,h4. A graphical representation
of a joint limit boundary could be an irregular cone which
is defined by these angles. The rotational limits are en-
forced by re-positioning the target point as the nearest
(a)

(b)
Fig. 4. (a) The ball-and-socket joint, pi, with its associated irregular cone
which defines the allowed range of motion. (b) Shows the composite
ellipsoidal shape created by the distances qj mapped from 3D to 2D.

(b)(a)

(d)(c)

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 249
point on a conic section from the target position; this pro-
cedure is described in detail later. There are 3 possible
conic sections, according to the angles defining the irregu-
lar cone: if all hs are equal, the conic section is a circle; if all
hs are greater or smaller than 90� and are not equal, the
conic section has an ellipsoidal shape; finally, if there are
hs both greater and smaller than 90�, then the joint bound-
ary limits are defined by a parabolic shape, as illustrated in
Fig. 3. In subsequent analysis, the joint limits are assumed
to be defined by an ellipsoidal shape, since this is the most
common case, but similar procedures apply for different
conic sections. Fig. 4 gives a graphical representation of
the implemented constraints and the irregular cone
describing the rotational motion bounds for the case of
an ellipsoidal shape.

The orientation of the joint can be assigned as follows:
Assume we are in the first stage of the algorithm, i.e. we
have just calculated the new position of joint p0i, and we
want to find the new position of the (i � 1)th joint, p0i�1.
Find the rotor expressing the rotation between the orienta-
tion frames at joints p0i and pi�1 and if this rotor represents
a rotation greater than a limit, reorient the joint pi�1 in
such a way that the rotation will be within the limits. Re-
peat the procedure for all the joints on both stages of the
algorithm. The methodology is also described in pseudo-
code in Algorithm 2.

Algorithm 2. The orientational constraints
Input: The rotor R expressing the rotation
between the
orientation frames at joints pi and pi�1.

Output: The new re-oriented joint p0i�1.
2.1
 Check whether the rotor R is within the motion
range
(f)(e)
bounds

2.2
 if within the bounds then

2.3
 do nothing and exit

2.4
 else

2.5
 reorient the joint pi�1 in such a way that the

rotor will

be within the limits
2.6
 end
(h)(g)
Fig. 5. Incorporating rotational and orientational constraints within
FABRIK. (a) The initial configuration of the manipulator and the target, (b
relocate and reorient joint p4 to target t, (c) move joint p3 to p03, which lies on
the line that passes through the points p04 and p3 and has distance d3 from
p04, (d) reorient joint p03 in such a way that the rotor expressing the rotation
between the orientation frames at joints p03 and p04 is within the motion
range bounds, (e) the rotational constraints: the allowed regions shown as a
shaded composite ellipsoidal shape, (f) the joint position p2 is relocated to a
new position, p̂2, which is the nearest point on that composite ellipsoida
shape from p2, ensuring that the new joint position p02 will be within the
allowed rotational range. (g) move p̂2 to p02, to conserve bone length, (h
reorient the joint p02 in order to satisfy the orientation limits. This procedure
is repeated for all the remaining joints in a forward and backward fashion
Once the joint orientation is established, the rotational
(2 DoFs) limits, described by angles h1,. . .,h4, can be applied
as follows. Firstly, we find the projection O of the target t on
line L1, where L1 is the line passing through the joint under
consideration, pi, and the previous joint of the chain, pi+1.
Then determine the distance S from the point O to the joint
position pi and calculate the distances qj = Stan(hj), for
j = 1,. . .,4, as shown in Fig. 4. We then apply a rotation
and translation which takes O to the origin and the axes
defining the constraints to the x and y axes, as in Fig. 4(b).
Working in this 2D plane, we locate the target in a particu-
lar quadrant and find the ellipse defined on that quadrant
using the associated distances qj; for example, in Fig. 4(b)
we are working with the ellipse which is defined by the an-
gles h2 and h3 (or the distances q2 and q3). Finally, find the
nearest point on that ellipse from the target, if the latter
)

l

)

.

250 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
is not in the allowed motion range. The nearest point on an
ellipse from a point can be found by simultaneously solving
the ellipse equation and the equation of the tangent line at
the orthogonal contacting point on the ellipse using the
Newton-Raphson method, as described in [46]. Obviously,
it is not necessary to calculate all the ellipses which define
the composite ellipsoidal shape of Fig. 4(b), but only the el-
lipse related to the quadrant in which the target is located.
It is important here to recall that, if the constraints which
define the allowed range of motion are described by a dif-
ferent conic section (circle or parabola), the target should
be re-positioned as the nearest point on that conic section,
similarly to the ellipsoidal case. The last step is to undo the
initial transformation which mapped O to the origin. This
procedure is illustrated in pseudo-code in Algorithm 3
and a demonstration of the process is given in Fig. 5.

Algorithm 3. The rotational constraints
Input The target position t and the angles
defining the
rotation constraints hj for j = 1,. . .,4.

Output: The new target position t0.
3.1
 Find the line equation L1
3.2
 Find the projection O of the target t on line L1
3.3
 Find the distance between the point O and the
joint

position
3.4
 Map the target (rotate and translate) in such a
way that O

is now located at the axis origin and oriented
according

to the x and y-axis) Now it is a 2D simplified
problem
3.5
 Find in which quadrant the target belongs

3.6
 Find what conic section describes the allowed

range of

motion
3.7
 Find the conic section which is associated with
that

quadrant using the distances qj = Stanhj, where

j = 1,..,4
3.8

(a)
% Check whether the target is within the conic
section or not
3.9
 if within the conic section then

3.10
 use the true target position t

3.11
 else

3.12
 Find the nearest point on that conic section

from the

target
3.13
 Map (rotate and translate) that point on the
conic
section via reverse of 3.4 and use that point as

the new target position
3.14
 end
(b)
Fig. 6. Solution for special joint restriction cases: (a) the original case and
when the allowed range of motion is greater than 180 degrees, (b) when
the target is located on a different hemisphere than the irregular cone.
This is a versatile, and easily visualisable, method of
restricting where the bone can go. Incorporating this meth-
odology within an IK solver, such as FABRIK, will give us
the opportunity to reconstruct or track animated figures
with high accuracy. IK algorithms are generally more effec-
tive if the constraints are applied at each step (not at the
end of the algorithm), ensuring that the rotational and ori-
entational restrictions are satisfied at each iteration. Thus,
the proposed joint constraints can be applied within FAB-
RIK by ensuring that the target, at each step, is moved to
be within the allowed orientational and rotational bounds.
Hence, assume that we are in the first stage of the algo-
rithm, and have just calculated the new positions of the
joints, p0iþ1 and p0i, and we want to find the new position
of the (i � 1)th joint, p0i�1. Check if the joint pi�1 satisfies
the orientational limits and if so, check whether it is within
the composite ellipsoidal shape that describes the allowed
range bounds, as illustrated above. If it is not, then pi�1

should be re-oriented and/or re-positioned within the al-
lowed bounds ðp̂i�1Þ. Thereafter, p0i�1 can be defined as
the point on the line li�1, which passes through the joint
positions p̂i�1 and p0i and has di�1 distance from p0i, as is
illustrated in Fig. 5.

The same technique for constraining joints is applied in
the second stage of the algorithm and for each iteration un-
til the target is reached or there is no significant change in
the end effectors’ positions. The algorithm copes with
joints and limbs having 3 DoFs, and it can handle cases of
joint and limb twist. It is important to recall here that
the inter-joint lengths do not change over time since these
distances are implicity kept constant by FABRIK.

The proposed restriction methodology can be easily ex-
tended to manage joint limits greater than 180 degrees. For

(a) (b)

(c) (d)
Fig. 7. Incorporating constraints for a hinge joint. (a) The initial configuration of the manipulator and the target. U1 gives the plane of the allowed motion
and it is defined by the hinge joint p2 (1 DoF). The root and the target, which is oriented, also define the plane U2. (b) Relocate and reorient joint p03 to target
t. Then, project p2 onto the plane U2 to give a new point p̂2, and find the point p02 on line l2 that passes from the joint position p03 and the projected joint
position p̂2 and has distance d2 from p03. Reorient the new joint using the orientation constraints. (c) move and reorient joint p1 to p01, which lies on the line
that passes through the points p02 and p1 and has distance d1 from p02, (d) The problem is now again a 2D problem and all joints lie on plane U2. Thus, FABRIK
can then be applied to of all the remaining joints in a forward and backward fashion.

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 251
instance, when the angle which defines the allowed range
of motion is greater than 180 degrees, the associated irreg-
ular cone will define the area which is outside the limits. In
that case, the joint restriction methodology will work in a
reverse fashion; if the target is within the irregular cone
area, meaning it is outside the limits, it will be projected
to the cone surface, as is demonstrated in Fig. 6(a). Another
special case of joint restriction occurs when the target is lo-
cated in such a position that is not in the same hemisphere
(in Fig. 6(b), the upper hemisphere) as the irregular cone.
The limits of motion are defined as the irregular cone in
the upper hemisphere and a reflection of the cone in the
lower hemisphere; the target in the lower hemisphere is
projected onto the limit boundary by first projecting its po-
sition onto the reflected cone and taking the associated
point on the regular cone, as shown in Fig. 6(b). Obviously,
the algorithm works in a similar way for different conic
sections.

One big advantage of the proposed methodology is that
no bone requires rotation to lie in any cone or polygon
window, such as those described in [41,42]; it is only nec-
essary to check whether the target is within the composite
ellipsoidal shape defined by the restrictions on the motion.
It loses none of the advantages of the FABRIK algorithm,
incorporating joint limits via only points, lines and basic
2D entities; no rotational matrices need to be calculated,
resulting in large savings in computational time. If it is
desirable to retrieve the joint angles, all necessary informa-
tion is of course available (position and orientation of each
joint).

If more information about the allowed range of motion
is available, the proposed methodology can be extended to
include increased sophistication, supporting more complex
joint types. Thus, instead of having an ellipsoidal entity to
describe the sub-area in which the target can be placed, a
polygonal area can be implemented. If the target is out of
range, we would look for the nearest point on the polygon.

The constraining methodology can also be modified to
support other IK solvers. There are, however, some limita-
tions on what joint types this prototype version can sup-
port, since it is assumed that the inter-joint distance
remains constant over time. Prismatic, slicing or shifting

Fig. 8. The structure of the models used in our experimental examples.
(a) A kinematic chain consisting of 10 joints and 1 end effector. There are
2 kinematic chain models, an unconstrained and a constrained version,
(b) a kinematic model with 10 unconstrained joints and 2 end effectors,
(c) a hand model with 26 unconstrained joints and 5 end effectors, (d) a
humanoid with 13 unconstrained joints and 5 end effectors. The target
positions (end effectors) are shown in red, while the joint positions are
shown in green.

Fig. 9. Experimental solutions using some of the most popular IK
methods. The kinematic chains consisted of 10 unconstrained joints,
allowing 3 DoFs on each joint. (a) Initial position, (b) FABRIK, (c) CCD, (d) J.
Transpose, (e) J. DLS, (f) J. SVD-DLS, (g) FTL, (h) Triangulation. Note that
the link lengths of the resulting FTL posture are not equal to their initial
size.

252 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
joints (joint types more usually discussed in robotics) are
not directly supported and more information about the
joint is required to attain a solution. Self-collisions can be
handled using existing techniques, such as [47]; but more
work is needed to ascertain if the FABRIK framework gives
any advantages when dealing with self occlusions.

The problem of limiting the joint movements for simple
2D joint models, such as the hinge joint, can be simplified
using alternative approaches. Since FABRIK operates on
the joint coordinates by adjusting the positions in an iter-
ative fashion, the 2D restrictions can be enforced by pro-
jecting the joint onto the plane of orientation. That plane
is defined by the root and the (oriented) target position.
An illustration showing how restrictions can be enforced
for a hinge manipulation is given in Fig. 7. Similar tech-
niques can be applied to incorporate constraints for differ-
ent types of joint, in a variety of motions.

The ability of the constrained version of the algorithm
to converge has not been reduced. If the target is within
the reachable area and there is a joint configuration which
allows the chain to bend enough and reach the target, FAB-
RIK will attain the solution. Obviously, since the chain is
not free from joint restrictions, there are instances where
the target is not reachable. For those instances, there is a
termination condition, similar to the unconstrained ver-
sion, which compares the previous and the current posi-
tion of the end effector.
5. Experimental results

A target database has been created for the validation
and testing of the IK methods. The database consists of
reachable and unreachable targets, targets with different
distances from the end effectors and targets that move
smoothly in space with end effectors tracking their posi-
tion. The tests also consist of reconstructing sequences
with different classes of motion in order to process differ-
ent swivel angles and axial orientations of the root joint.
The examples are demonstrated in 6 different kinematic
models; a chain with 10 unconstrained joints allowing 3
DoFs on each joint; a chain with 10 constrained joints
allowing limited angle rotations with 3 DoFs; a model con-
taining a ‘Y-shape’ having 10 unconstrained joints and 2
end effectors; a fully unconstrained and un-modelled hand
with 26 joints, 3 DoFs on each joint of which 5 are end
effectors and one the root; and a 13 joint humanoid model,

Fig. 10. A comparison between the FTL and the FABRIK approaches; the
FABRIK posture is shown in green and the FTL posture in orange. (a) The
FTL algorithm used fewer averaging iterations to calculated the final pose,
thus the resulting posture has more link length variations, (b) the link
length variation of the FTL algorithm was reduced over several iterations.
Nevertheless, the changes in link size is still significant.

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 253
in a constrained and unconstrained version, with 3 DoFs on
each joint and 5 end effectors. The IK problem for the hand
and humanoid model is solved sequentially using closed
loops in a predefined hierarchical order. Fig. 8 shows the
different kinematic models used within this work.

IK techniques will mostly work with specified positions
and orientations of specific joints, usually the end effectors,
since they are more easily specified by the animator and
tracked by the motion capture system; thereby, they auto-
matically configure the remaining joints according to dif-
ferent criteria that depend on the model variant and joint
restrictions.

Some of the most popular IK methods have been tested
against FABRIK, such as CCD, Jacobian Transpose, Jacobian
DLS, Jacobian pseudo-inverse DLS (SVD-DLS), FTL and Tri-
angulation. In some of our experiments, we implemented
examples with large distances between target and end
effectors; hence, some methods tend to require more iter-
ations to reach the target and thus the convergence differ-
ences are more obvious. The Jacobian and DLS parameter
values used in our experiments are the parameter values
suggested by Buss and Kim [7]; the damping constant
was set to k = 1.1. Several tests and comparisons have been
implemented between the proposed algorithms in respect
of their computational cost, processing time, convergence,
the number of iterations needed to reach the target and the
reconstruction quality.

5.1. A single end effector

In this section, the methods have been tested on prob-
lems with a single end effector and fixed target positions.
These experiments did not include any joint constraints,
but all methods could be enhanced to enforce rotational
and orientational limits. An example with the resulting
postures for each methodology is presented in Fig. 9.

FABRIK produces results significantly faster than all IK
methods tested. It is approximately 10 times faster than
the CCD method and a thousand times faster than the Jaco-
bian-based methods, for these examples with large end
effector movements. FABRIK has the lowest computational
cost and, at the same time, produces visually the smooth-
est and most natural movements. It needs the fewest iter-
ations to reach the target, it converges faster to the desired
position and, when the target is unreachable, it keeps the
end effector pointing to the target. On average, FABRIK
needs 15.4 iterations and just 13.2ms to attain a reachable
target and 67 iterations and 62ms for an unreachable tar-
get. When the target is unreachable, for this unconstrained
model, FABRIK converges to a final answer in just 1 itera-
tion and only 0.2ms.

CCD can also be applied in real-time. It is much faster
than any Jacobian-based method; it needs, on average, 26
iterations and 123ms to reach the target when it is within
reach. On the other hand, when the target is not reachable,
it needs almost 400 iterations and 4sec to converge to its
final solution (using the default algorithm without optimi-
sations). However, CCD can often generate unrealistic pos-
tures since it can roll and unroll itself before reaching the
target. CCD also tends to overemphasise the movements
of the joints closer to the end effector of the kinematic
chain.

The Jacobian methods return reasonable results; the
reconstructed chain poses are visually more natural than
CCD. Nevertheless, the biggest advantage of the Jacobian
methods over all other methods is that, by default, they
can treat problems with multiple end effectors very easily.
Constraints can be applied within the Jacobian algorithms,
but the way in which these restrictions are incorporated is
not straightforward. Some Jacobian methods also suffer
from singularity problems, since matrix inverses need to
be calculated. The Transpose and DLS methods do not suf-
fer in this way since they do not use the matrix inverse.
The Jacobian methods also incur high computational cost
making this family of methods non-ideal for real-time
applications. The Jacobian methods generally converge
very slowly to their final solutions since they use a linear
approximation with a small step. This is more obvious in
Fig. 11, where the number of iterations needed to reduce
the distance between target and end effector as this
changes over time is presented for each methodology. In
this example, the original chain is 900mm long, the dis-
tance between target and end effector is 600mm, and the
termination tolerance is 1 � 10�3mm.

The FTL algorithm produces poses in real-time and its
resulting postures tend to resemble poses in the first step
of the first iteration of FABRIK (Fig. 10 and 11 shows a com-
parison between the FTL and FABRIK methods). However,
the averaging step of the algorithm induced a variation of
the link lengths compared to their initial size (this could
be considered as its major drawback). Even after a large
number of iterations, the length variations still exist. In
cases where the target is unreachable, FTL stretches the
chain length in order to reach the target. In addition, the
iterations needed to restore the link lengths to their initial
size (in some cases, FTL requires more than double the
number of iterations of FABRIK) increase the computa-
tional cost and the processing time required to achieve a fi-
nal pose. Brown et al. [24] does not provide solutions for
problems with multiple end effectors and targets and, be-
cause of the averaging step, it is difficult to incorporate
rotational and orientational constraints.

The Triangulation algorithm incurs a lower computa-
tional cost than the CCD algorithm and is substantially fas-
ter than the Jacobian methods. However, the resulting

0 5 10 15 20 25 30
0

1

2

3

4

5

6 x 104

Number of iterations

D
is

ta
nc

e
be

tw
ee

n
ta

rg
et

 a
nd

en
d

ef
fe

ct
or

 (m
m

)

FABRIK
CCD

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
x 104

Number of Iterations

D
is

ta
nc

e
be

tw
ee

n
ta

rg
et

 a
nd

en
d

ef
fe

ct
or

 (m
m

)

J.Transpose
J.DLS
J.SVD−DLS

Fig. 11. The number of iterations needed to reach the target against the distance between target and end effector as this changes over time.

254 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
kinematic chain has a visually unrealistic shape; the joints
close to the end effector are usually in a straight line, with
the emphasis on rotation of the joints neighbouring the
root. Another important drawback of the Triangulation
algorithm is that it cannot be adapted for multiple end
effectors, thus it cannot be used for complex character
models. It also suffers from an inability to reach a feasible
solution when joint constraints are applied; the end effec-
tor often cannot reach the target, even if there is a solution,
since each joint position is calculated independently with-
out considering the restrictions on the next joint.

Table 1 presents the average runtimes of each of the
methods, as well as the number of iterations needed to
reach the target, for both cases of a reachable and an
unreachable target. Runtimes are in seconds and were
measured with custom MATLAB code on a Pentium 2
Duo 2.2 GHz. No optimisations were used for any method
reported in the table. It also indicates the time needed
per iteration for each method and how many iterations
per second each methodology can support. An iteration
of FABRIK has the lowest computational cost since, instead
of using angle rotations, it treats finding the joint locations
as a problem of finding a point on a line.

Fig. 9 compares the performance of each algorithm for
solving Inverse Kinematic problems; it shows the initial
configuration and the goal solution obtained with each
methodology. The manipulator is fully unconstrained and
Table 1
Average results (over 20 runs) for a single kinematic chain with 10 joints.

Reachable Target

Number of Matlab exe. Time pe
Iterations time (sec) (in msec

FABRIK 15.461 0.01328 0.86
CCD 26.308 0.12356 4.69
Jacobian Transpose 1311.190 12.98947 9.90
Jacobian DLS 998.648 10.48051 10.49
Jacobian SVD-DLS 808.797 9.29652 11.50
FTL 21.125 0.02045 0.97
Triangulation 1.000 0.05747 57.47
has no limits on the range of allowed movement for each
joint. In each case a position goal is specified for the end
effector and the Inverse Kinematic problem is solved to
varying degrees of accuracy. Fig. 12 plots the convergence
of each method, meaning the time taken to achieve the
solution with the requested degree of accuracy. It is clearly
observed that FABRIK converges to the target faster than
any other implemented methodology. Also, Fig. 12 verifies
that FABRIK always converges to the target, if the latter is
reachable, in those cases tested.

The FABRIK, CCD, DLS and SVD-DLS methods have also
been tested when the targets are moving in a sinusoidal
trajectory and the end effectors are tracking their positions
when they are within reach, and keeping the end effectors
pointing at the targets when they are unreachable. The
accuracy of the tracking was measured over a period of a
thousand simulation steps. FABRIK tracks the target in
real-time producing smooth and visually natural motion
without erratic discontinuities. CCD produces reasonable
results within the real-time constraints; however there
are instances where the motion produced is not visually
realistic. It is important to mention that CCD’s performance
improves when the target is within a small distance from
the end effector’s position or the frame rate is high. This
happens because the kinematic chain does not roll and un-
roll itself. On the other hand, the Jacobian-based methods
can produce oscillating motion with discontinuities. Their
Unreachable Target

r iteration Iterations Number of Matlab exe.
) per second Iterations time (sec)

1164 67.564 0.06207
213 390.135 3.92869
101 6549.000 33.90473
95 2881.667 14.87918
87 2808.452 15.97591
1033 22.325 0.02526
21 1.000 0.06993

5 1 0.5 0.1 0.05 0.01 0.005 0.001
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ti
m

e
(s

ec
)

Tolerance (x10−3 mm)

FABRIK
CCD

5 1 0.5 0.1 0.05 0.01 0.005 0.001
0

10

20

30

40

50

60

Tolerance (x10−3 mm)

Ti
m

e
(s

ec
)

J. Transpose
J. DLS
J. SVD−DLS

Fig. 12. An example presenting the time needed for each methodology to achieve the solution with the degree of accuracy requested.

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 255
biggest drawback however is the time needed to track the
target; only under some circumstances, eg using fast C++
matrix libraries, can these kinds of methods reach the goal
of real-time application. Fig. 13 presents the performance
of each method on selected frames over time.

The FABRIK algorithm has been also implemented and
tested within the Kine [12] application; Kine is a 2D real-
time gaming application that initially has a kinematic
chain with six joints. Kine allows you to interact with the
IK solver; you click on the screen and the snake (the kine-
matic chain is drawn as a snake) moves to solve the IK
problem. There is also an option where you click and drag
on the screen and the snake tracks the mouse. Fig. 14
shows examples of the FABRIK and CCD methods imple-
mented within the Kine environment when the end effec-
tor moves through large distances. It is clearly observed
that FABRIK out-performs CCD in producing smoother
poses.

5.2. Multiple end effectors

Most real models, such as the hand, legged bodies etc,
consist of multiple chains, each chain having at least one
end effector. Hence, it is essential to test our methodology
in cases where more than 1 end effector exists. To test FAB-
RIK under these conditions, we implemented the ‘Y-
shaped’ multibody pictured in Fig. 15(a), also used in [7],
and a hand multibody presented in Fig. 15(b). The ‘Y-
shape’ multibody has 10 joints with 2 end effectors. The
target positions (the red balls in the figures) moved in
sinusoidally varying curves in and out of reach of the mul-
tibody. The target positions moved in small increments
and in each time step the joint positions were updated.
The simulations were visually inspected for oscillations
and tracking quality. The end effectors can successfully
track the target positions when they are within reach,
and remain pointing at the targets when these are out of
reach. Fig. 15(a) presents a simple example of how FABRIK
performs with multiple end effectors; although it is hard to
show in images, FABRIK can easily track both targets with a
smooth motion and without oscillations, shaking or erratic
discontinuities.

Fig. 15(b) shows another example of implementing
FABRIK into a multiple end effector model. This is a fully
unconstrained hand example with 5 end effectors and 26
joints in total, allowing 3 DoFs on each joint. Incorporating
a highly constrained model that also considers the anatom-
ically and physiologically properties of the hand, such as
[40], the motion of each joint can be restricted to a feasible
set and the hand will have even more natural movements.

Fig. 16 shows an example of a tracking animation of a
humanoid with 13 joints, 5 of which are treated as end
effectors. In this demonstration, the frame rate was low
(3 frames per second); the 3Hz frame rate selection in-
creases the distance between target and end effector, thus
the performance of each method is more obvious. FABRIK
can easily track the animated humanoid in real-time, pro-
ducing very reasonable results. Fig. 17 shows the recon-
struction quality of different methodologies over the
same humanoid model. The differences between the
implemented methodologies, on these unconstrained
humanoid examples, are more obvious on shoulders, el-
bows and hips. FABRIK produces visually natural postures,
having the smaller reconstruction error compared to the
original sequences. These animations have been obtained
from an optical markered motion capture system and have
not been filtered; thus, the algorithm is shown to be robust
in noisy environments. Selected internal joints have been
artificially deleted in order to examine the reconstruction
quality of each methodology. These humanoids do not
have a mesh that defines their external shape, so self colli-
sions are not considered within these reconstruction
examples.

Table 2 shows the performance (over 20 runs) of each
methodology for the case of a dancing humanoid model.
The computational cost and the reconstruction quality for
tracking the animated model is also presented. FABRIK
gives the best results with respect to computational cost
and reconstruction quality; it requires the fewest iterations
to achieve the desired posture and produces visually the

Fig. 13. Selected frames during target tracking at 25Hz using different IK
solvers. (a) FABRIK, (b) CCD, (c) J. DLS, (d) J. SVD-DLS

Fig. 14. FABRIK and CCD solution using the Kine application. (a) FABRIK
solution, (b) CCD solution.

Fig. 15. An example of FABRIK implementation with multiple end
effectors over time; (a) a kinematic chain with 10 unconstrained joints,
2 end effectors and 2 targets, (b) A hand motion example using FABRIK;
this is a fully unconstrained hand example, allowing 3 DoFs on each joint.

256 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
smoothest poses. The median error presented in Table 2 re-
fers to the difference between the estimated joint positions
and the true joint positions.
5.3. Applying restrictions

Most IK problems have rotational and orientational
restrictions since most real world joints have limitations
on their movements. The experimental dataset used to test
the reconstruction quality of the constrained FABRIK is
made up of 10 joints, each having angle rotational restric-
tions allowing movements only within a range. The same
humanoid model, as described in Section 5.2, is used to
examine the reconstruction quality of the proposed meth-
odology with and without constraints.

FABRIK can be easily constrained producing visually
realistic postures without oscillations and discontinuities.
The constrained version is slightly slower than its uncon-
strained counterpart, requiring now almost 3.0ms to reach
the target. Nevertheless, it is still much faster than other IK
methods and approximately 10 times faster than con-
strained CCD. The reconstruction quality is high, producing
postures with an average error of just over 30mm, almost
half the average error of the unconstrained version. On
the other hand, while it is not difficult to apply manipula-
tor constraints to CCD, the resulting animation often still
has unnatural movements, especially when the target is
at a significant distance from the end effector. The uncon-
strained version of CCD produces different joint poses
compared to its constrained version, even if the latter is
not violating the angle restrictions. It is interesting to note
that there are instances where the constrained version of
CCD needs fewer iterations and therefore performs slightly

Fig. 16. A low rate body tracking example. The joints in red are the known positions of the end effectors and those in blue are the estimated joint positions.
(a) shows the true body poses and (b) the estimated poses using FABRIK.

Fig. 17. Body reconstruction using different IK methodologies. The joints in red are the known positions of the end effectors and those in blue are the
estimated joint positions. (a) shows the initial position and (b) the true final position. (c) shows the FABRIK solution, (d) the CCD solution, (e) the J.
Transpose solution, (f) the J. DLS solution, (g) the J. SVD-DLS solution

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 257
faster than its unconstrained version. This happens be-
cause the constraints prevent the chain from rolling and
unrolling itself before reaching the target. Fig. 18, shows
examples of FABRIK and CCD implementations with and

Table 2
Reconstruction comparison. Average results (over 20 runs).

Number of Median Time per Median Error
Iterations time � iteration � (mm)

FABRIK 65 1.6 0.0246 58.68
CCD 67 20.5 0.3060 69.99
J.Transpose 1352 1928.0 1.4334 137.42
J.DLS 804 1533.0 1.9067 84.84
J.SVD-DLS 723 1494.0 2.0664 83.73

� This is a MATLAB executable time in msec

Fig. 18. An example of FABRIK and CCD implementations with and
without incorporating constraints. (a) presents the FABRIK unconstrained
solution and (b) the FABRIK constrained solution. (c) presents the CCD
unconstrained solution, and (d) is the CCD constrained solution.

Fig. 19. An example of implementation. (a) The initial position, (b) the
real posture, (c) the solution using unconstrained FABRIK, (d) the solution
after incorporating joint restrictions.

258 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
without joint restrictions. On that example, rotational lim-
its have been applied restricting the allowed bending of
each joint angle to a maximum value (treated as ball and
socket joints). Fig. 19 shows the reconstruction improve-
ment between an unconstrained and a constrained version
of FABRIK applied to the humanoid model; rotational and
orientational constraints have been employed on each
joint (including the hinge joint technique for elbows and
knees) limiting the angle and the twist between limbs to
a feasible set.
5.4. FABRIK limitations

During the implementations and testing of the algo-
rithm, no significant limitations have been encountered.
Some minor limitations on what joint types the algorithm
supports are mentioned in Section 4.3; however, these lim-
itations can be coped with if more information is provided
about the joint. For instance, in the case of a prismatic joint,
FABRIK can obtain a solution if the final inter-joint distance
or its minimum and maximum allowed length are known a
priori. A breakdown of the algorithm (a singularity prob-
lem) has been also observed when the kinematic chain
was completely straight and the target was located exactly
on that alignment but between the two joints (on the line
which connects two joints). In that case, the chain would
be displaced towards the root but would still be straight
after the forward step of the process. And after the second
step (backward), it would be back at the original place, thus
entering to an infinite loop (a similar problem is encoun-
tered in the CCD algorithm). However, this rare singularity
problem can be easily handled by allowing the chain to
bend by a very small angle within the user constraints (by
repositioning the target during the first backward stage
and then returning it to its original location).

6. Conclusions and future work

IK methods are used to control the postures of articu-
lated bodies in frame animation production. However, most
of the currently available methods suffer from high compu-
tational cost and/or production of unrealistic poses. In this
paper, FABRIK, a simple, fast and reliable IK solver is pre-
sented. This is the first algorithm to use an iterative method
with points and lines to solve the IK problem. It divides the
problem into 2 phases, a forward and backward reaching
approach, and it supports (to the best of our knowledge)
all the rotational joint limits and joint orientations by repo-
sitioning and re-orienting the target at each step. It does not
suffer from singularity problems and it is fast and computa-
tionally efficient. No pre-recorded motion database is nec-
essary, thereby avoiding the need for extra memory. Also,
a reliable methodology for applying joint restrictions,

A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260 259
which supports and utilises all the advantages of FABRIK, is
presented. Our experiments show that FABRIK requires on
average fewer iterations to reach the target than any other
IK method tested, both with constrained and unconstrained
kinematic chains. At the same time, it produces visually
smooth postures, with and without constraints, reaching
the desired position with very low computational cost.
FABRIK can be also extended to a multiple end effector ver-
sion supporting multiple kinematic chains. Future work
will see the introduction of the proposed algorithm within
analytically and anatomically correct models. A further
study of the collision problem, with simultaneous study
of more sophisticated joint types, is also essential for the
production of more natural movements.

Acknowledgments

The kine environment presented in Section 5.1 has been
adapted from the work of Jeff Lander [12]; we would like to
express our enormous thanks to Jeff for giving us permis-
sion to use his code and application. We would also like
to thank Richard Wareham, Jonathan Cameron and Charles
Lee for their invaluable discussions and help with captur-
ing data and producing video examples.
Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.gmod.2011.05.003.

References

[1] Jianmin Zhao, Norman I. Badler, Inverse kinematics positioning using
nonlinear programming for highly articulated figures, ACM
Transactions on Graphics (TOG) 13 (4) (1994) 313–336.

[2] A. Balestrino, G. De Maria, L. Sciavicco, Robust control of robotic
manipulators, in: Proc. of the 9th IFAC World Congress, vol. 5, 1984,
pp. 2435–2440.

[3] W.A. Wolovich, H. Elliott, A computational technique for inverse
kinematics, in: The 23rd IEEE Conf. on Decision and Control, vol. 23,
1984, pp. 1359–1363.

[4] J. Baillieul, Kinematic programming alternatives for redundant
manipulators, in: Proc. of the IEEE International Conf. on Robotics
and Automation, vol. 2, March 1985, pp. 722–728.

[5] C.W. Wampler, Manipulator inverse kinematics solutions based on
vector formulations and damped least-squares methods, IEEE
Transactions on Systems, Man and Cybernetics 16 (1) (1986) 93–
101.

[6] Y. Nakamura, H. Hanafusa, Inverse kinematic solutions with
singularity robustness for robot manipulator control, Transactions
ASME, Journal of Dynamic Systems, Measurement, and Control 108
(3) (1986) 163–171.

[7] Samuel R. Buss, Jin-Su Kim, Selectively damped least squares for
inverse kinematics, Journal of Graphics Tools 10 (3) (2005) 37–49.

[8] Alexandre N. Pechev, Inverse kinematics without matrix invertion,
in: Proc. of the 2008 IEEE International Conf. on Robotics and
Automation, Pasadena, CA, USA, May 19–23 2008, pp. 2005–2012.

[9] Roger Fletcher, Practical Methods of Optimization, second ed., Wiley
Interscience, New York, NY, USA, 1987.

[10] Li-Chun Tommy Wang, Chih Cheng Chen, A combined optimization
method for solving the inverse kinematics problems of mechanical
manipulators, IEEE Transactions on Robotics and Automation 7 (4)
(1991) 489–499.

[11] Chris Welman, Inverse Kinematics and Geometric Constraints for
Articulated Figure Manipulation, Master Dissertation, Simon Fraser
University, Department of Computer Science, 1993.
[12] Jeff Lander, Making kine more flexible, Game Developer 5 (3) (1998)
15–22.

[13] Adrian A. Canutescu, Roland L. Dunbrack, Cyclic coordinate descent:
a robotics algorithm for protein loop closure, Protein Science 12 (5)
(2003) 963–972.

[14] Luis Unzueta, Manuel Peinado, Ronan Boulic, Ángel Suescun, Full-
body performance animation with sequential inverse kinematics,
Graphical Models 70 (5) (2008) 87–104.

[15] Ronan Boulic, Javier Varona, Luis Unzueta, Manuel Peinado, Angel
Suescun, Francisco Perales, Evaluation of on-line analytic and
numeric inverse kinematics approaches driven by partial vision
input, Virtual Reality 10 (1) (2006) 48–61.

[16] Richard Kulpa, Franck Multon, Fast inverse kinematics and kinetics
solver for human-like figures, in: International Conference on
Humanoid Robots, IEEE-RAS, December 2005, pp. 38–43.

[17] Nicolas Courty, Elise Arnaud, Inverse kinematics using sequential
monte carlo methods, in: Proc. of the V Conf. on Articulated Motion
and Deformable Objects, AMDO’08, LNCS, vol. 5098, Mallorca, Spain,
2008, pp. 1–10.

[18] Chris Hecker, Bernd Raabe, Ryan W. Enslow, John Deweese, Jordan
Maynard, Kees van Prooijen, Real-time motion retargeting to highly
varied user-created morphologies, ACM Transactions on Graphics
(TOG) 27 (3) (2008) 1–11.

[19] Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popović,
Style-based inverse kinematics, in: SIGGRAPH ’04: ACM Trans. on
Graphics, ACM, New York, NY, USA, August 2004, pp. 522–531.

[20] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, Jovan Popović,
Mesh-based inverse kinematics, ACM Transactions of Graphics 24
(3) (2005) 488–495.

[21] Kevin G. Der, Robert W. Sumner, Jovan Popović, Inverse kinematics
for reduced deformable models, in: ACM SIGGRAPH, ACM, New York,
NY, USA, 2006, pp. 1174–1179.

[22] R. Mü ller-Cajar, R. Mukundan, Triangulation: a new algorithm for
inverse kinematics, in: Proc. of the Image and Vision Computing
New Zealand 2007, New Zealand, December 2007, pp. 181–186.

[23] R. Mukundan, A robust inverse kinematics algorithm for animating a
joint chain, International Journal of Computer Applications in
Technology 34 (4) (2009) 303–308.

[24] Joel Brown, Jean-Claude Latombe, Kevin Montgomery, Real-time
knot-tying simulation, The Visual Computer: International Journal of
Computer Graphics 20 (2) (2004) 165–179.

[25] David Hestenes, Garret Sobczyk, Clifford Algebra to Geometric
Calculus: A Unified Language for Mathematics and Physics, D.
Reidel, 1984.

[26] Chris Doran, Anthony Lasenby, Geometric Algebra for Physicists,
Cambridge University Press, Cambridge, UK, 2003.

[27] Andreas Aristidou, Joan Lasenby, Motion capture with constrained
inverse kinematics for real-time hand tracking, in: Proc. of the
International Symposium on Communications, Control and Signal
Processing, Limassol, Cyprus, March 3–5 2010.

[28] Andreas Aristidou, Joan Lasenby, Inverse kinematics solutions using
conformal geometric algebra, in: L. Dorst, J. Lasenby (Eds.), Guide to
Geometric Algebra in Practice, Springer Verlag, 2011.

[29] Andreas Aristidou, Tracking and Modelling Motion for
Biomechanical Analysis, PhD Thesis, University of Cambridge,
Cambridge, UK, October 2010.

[30] Walter Maurel, Daniel Thalmann, Human shoulder modeling
including scapulo-thoracic constraint and joint sinus cones,
Computers & Graphics 24 (2) (2000) 203–218.

[31] Xuguang Wang, Jean Pierre Verriest, A geometric algorithm to
predict the arm reach posture for computer-aided ergonomic
evaluation, Journal of Visualization and Computer Animation 9 (1)
(1998) 33–47.

[32] N. Klop�car, M. Tomšič, J. Lenarčič, A kinematic model of the shoulder
complex to evaluate the arm-reachable workspace, Journal of
Biomechanics 40 (1) (2007) 86–91.

[33] Lorna Herda, Raquel Urtasun, Andrew Hanson, Pascal Fua, Automatic
determination of shoulder joint limits using experimentally
determined quaternion field boundaries, International Journal of
Robotics Research 22 (6) (2003).

[34] Norman I. Badler, Cary B. Phillips, Bonnie Lynn Webber, Simulating
Humans: Computer Graphics Animation and Control, Oxford
University Press, New York, Oxford, 1993.

[35] Augustus A. White III, Manohar M. Panjabi, Clinical Biomechanics of
the Spine, second ed., J.B. Lippincott Company, 1990.

[36] James Urey Korein, A Geometric Investigation of Reach, MIT Press,
Cambridge, MA, USA, 1985.

[37] Gary Monheit, Norman I. Badler, A kinematic model of the human

http://dx.doi.org/10.1016/j.gmod.2011.05.003
http://dx.doi.org/10.1016/j.gmod.2011.05.003

260 A. Aristidou, J. Lasenby / Graphical Models 73 (2011) 243–260
spine and torso, IEEE Computer Graphics and Applications 11 (2)
(1991) 29–38.

[38] Hans Rijpkema, Michael Girard, Computer animation of knowledge-
based human grasping, in; SIGGRAPH ’91: Proc. of the 18th Annual
Conf. on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, 1991, pp. 339–348.

[39] Richard M. Murray, S. Shankar Sastry, Li Zexiang, A Mathematical
Introduction to Robotic Manipulation, CRC Press, Inc., Boca Raton, FL,
USA, 1994.

[40] Paris Kaimakis, Joan Lasenby, Gradient-based hand tracking using
silhouette data, in: Proc.of the 3rd International Symposium on
Visual Computing (ISVC), vol. 1, Lake Tahoe, NV/CA, USA, November
26–28 2007, pp. 24–35.

[41] Jonathan Blow, Inverse Kinematics with Quaternion Joint Limits,
Game Developer, April 2002.

[42] Jane Wilhelms, Allen Van Gelder, Fast and easy reach-cone joint
limits, Journal of Graphic Tools 6 (2) (2001) 27–41.
[43] Paolo Baerlocher, Ronan Boulic, Parametrization and range of
motion of the ball-and-socket joint, in: Deformable Avatars,
Kluwer Academic Publishers, 2001. pp. 180–190.

[44] Deepak Tolani, Ambarish Goswami, Norman I. Badler, Real-time
inverse kinematics techniques for anthropomorphic limbs, Graphical
Models 62 (5) (2000) 353–388.

[45] Kiyomi Yamane, Yoshihiko Nakamura, Natural motion animation
through constraining and deconstraining at will, IEEE Transactions
on Visualization and Computer Graphics 9 (3) (2003) 352–360.

[46] Sung Joon Ahn, Wolfgang Rauh, Hans-Jnrgen Warnecke, Least-
squares orthogonal distances fitting of circle, sphere, ellipse,
hyperbola, and parabola, Pattern Recognition 34 (12) (2001) 2283–
2303.

[47] Ming C. Lin, Stefan Gottschalk, Collision detection between
geometric models: a survey, in: Proc. of IMA Conf. on Mathematics
of Surfaces, 1998, pp. 37–56.

	FABRIK: A fast, iterative solver for the Inverse Kinematics problem
	1 Introduction
	2 Background and motivation
	3 The articulated body model
	4 FABRIK: a new heuristic IK solution
	4.1 FABRIK with multiple end effectors
	4.2 FABRIK within closed loops
	4.3 Applying joint limits to FABRIK

	5 Experimental results
	5.1 A single end effector
	5.2 Multiple end effectors
	5.3 Applying restrictions
	5.4 FABRIK limitations

	6 Conclusions and future work
	Acknowledgments
	Appendix A Supplementary data
	References

