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Fig. 1. Our method can efficiently organize large dance motion collections based on their degree of similarity. Inferred
metadata information are then applied to semantically organize data into chronological, or geographical order, unveiling
potential similarities in terms of the evolution of dance in time and at different countries. In this example, we illustrate
similar Cypriot dances that were popular at different time periods.

Folk dances often reflect the socio-cultural influences prevailing in different periods and nations; each dance produces a
meaning, a story with the help of music, costumes and dance moves. However, dances have no borders; they have been
transmitted from generation to generation, along different countries, mainly due to movements of people carrying and
disseminating their civilization. Studying the contextual correlation of dances along neighboring countries, unveils the
evolution of this unique intangible heritage in time, and helps in understanding potential cultural similarities. In this work
we present a method for contextually motion analysis that organizes dance data semantically, to form the first digital dance
ethnography. Firstly, we break dance motion sequences into some narrow temporal overlapping feature descriptors, named
motion and style words, and then cluster them in a high-dimensional features space to define motifs. The distribution of those
motion and style motifs creates motion and style signatures, in the content of a bag-of-motifs representation, that implies for a
succinct but descriptive portrayal of motions sequences. Signatures are time-scale and temporal-order invariant, capable of
exploiting the contextual correlation between dances, and distinguishing fine-grained difference between semantically similar
motions. We then use quartet-based analysis to organize dance data into a categorization tree, while inferred information from
dance metadata descriptions are then used to set parent-child relationships. We illustrate a number of different organization
trees, and portray the evolution of dances over time. The efficiency of our method is also demonstrated in retrieving
contextually similar dances from a database.

CCS Concepts: • Computing methodologies→ Animation; • Applied computing→ Ethnography; Digital libraries and
archives; • Information systems→ Information retrieval;
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1 INTRODUCTION
Most countries in the Mediterranean, among others, are rich in history and cultural heritage. Their tradition has
been transmitted-to and influenced-by various neighboring civilizations. Over the last few decades, and due to
the recent technological advances, many nations have attempted to record, e-document, preserve, protect and
disseminate tangible cultural heritage. However, apart from tangible artifacts, cultural heritage also encompasses
a range of important assets that includes collective knowledge of communities, skills, practices, expressions, art,
fashion and representations that do not have a tangible form. Intangible Cultural Heritage (ICH), as stated in [98],
is a mainspring of humanity’s cultural diversity and its maintenance is a guarantee for continuing creativity.
Over the years, certain elements of ICH have been lost forever, while others are at high risk of disappearing,
mainly due to globalization, wars, financial crisis, and the movement of people, that cause the diminishment of
unique cultural assets.

This work focuses on documenting, analyzing and visualizing aspects of dance heritage. Folk dance is one of
the most important aspects of ICH. The indigenous dance traditions of most nations are still alive, and continue
to influence dance in modern years. Thus, appreciating and understanding dance and other structured movement
systems is important in the larger scheme of cultural forms. Dance forms respect no borders: they can be
transmitted through different civilizations and cultures, creating different variations that reflect the differences
of each country’s sociopolitical specificities. Many folk dance creations have been modified over time through
the process of collective recreation, and/or changes in the way of life over the years. Studying the evolution of
dances and their relation among neighboring countries is of high importance to the cultural heritage community.
Our work provides the algorithmic means for contextual dance motion analysis, unveiling similarities of dance
heritage in different neighboring countries and at different time periods, paving the way for computing the first
digital dance ethnography.

Dance ethnography refers to the textual presentation of data, including ethnographic descriptions on indigenous
perspectives. Dance has been proven to be an indicator of sociocultural circumstances with political and religious
influences, often identifying points of conflict and driving transitions. In order to be understood as dance,
movements must be grammatical; the grammar of a movement idiom involves structure, style, and meaning. One
must learn to recognize the movements that make up the system, how they can be stylistically modified, and
what is their syntax (rules about how they can be put together to form motifs, phrases, larger forms, and whole
pieces) [52]. In this work, motion sequences are divided into motion and style words that are clustered together to
form motifs. The motions are then characterized by the frequency and distribution of those motifs. Representing
motion in such a succinct and descriptive form allows to automatically unveil the social and cultural correlation
between neighboring countries in terms of their context.
In recent years, the attention of a number of scientists and media artists has been drawn to utilizing existing

techniques, and developing new ones for the preservation and propagation of the dance heritage, as well as its
distribution through media technologies [7, 19, 42, 44, 57] . More specifically, motion acquisition has been enabled
using motion capture systems (e.g., optical, inertial or RGB-Depth motion capture systems). These systems have
proven to be an effective technology and a convenient tool for capturing, and digitizing complex human dynamic
movements, advancing the ability to digitally store, curate, present and re-use intangible creations, such as folk
dancing [59, 92]. With the emergence of motion capture data and the large availability of motion datasets, such
as the Dance Motion Capture Database (DMCD) [29], content-based motion analysis techniques have become
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essential for organizing dance motion collections. Such techniques should allow effective searching in the datasets
and unveil contextual similarities and differences. However, motion data does not contain labels, annotation or
semantics to assist organization. In addition, the large diversity of motions, and their complexity, makes automatic
motion indexing and clustering challenging, especially for highly dynamic, heterogeneous, and stylized motions,
such as dancing. Most motion clustering techniques rely on motion skeletal [13, 56, 62] or relational [54, 75, 82]
information, and fail to assess some important aspects of human action, such as synchronization and scaling. In
fact, each performer’s improvisation, experience, and talent may result in different variations of the same dance,
while the same dance can vary in the temporal order, duration, and time, even if they are performed by the same
dancer.
In this work, we introduce the algorithmic framework for contextual analysis, organization, and comparison

of dances. Our context-based motion organization approach, which exploits the geometric and stylistic relation
between motions, automatically group similar dance performances and can be used to form the digital dance
ethnography, to unveil potential similarities between dances from neighboring countries, to study the evolution
of dance, and many other applications. As a first step, we have enriched the DMCD, in collaboration with dance
schools and cultural workshops, with a large number of high quality folk dances originated from the wider
region of the eastern Mediterranean, the Balkans and Pontus. We describe how dance motion can be acquired and
documented holistically so as to enable the extraction of semantic, cultural, and contextual correlations. We have
defined a descriptive representation for motions based on signatures [5], which rely on the distribution of some
narrow temporal overlapping feature descriptors, named motion and style words. Signatures are time-scale and
temporal-order invariant, capable of exploiting the contextual correlation between dances. Our dance collection
is then organized into a categorization tree via quartet-based analysis [49]. In close collaboration with dance
experts, we identified which metadata are useful for archiving, curating, presenting and re-using dance motion
data. We designed a holistic metadata scheme to drive further studies of dances from an anthropology, and
ethnology perspective. Moreover, inferred information from those metadata descriptions is used to establish
semantic links between dances. The semantic links create parent-child relationships, in a hierarchical mode,
to establish chronological and geographical correlations in our dance collection, paving the way for creating
the first digital dance ethnography. It is important to note that we only focus on the geometric and stylistic
characteristics of movements, while the hierarchy is based on semantic links derived from metadata information.
We visualize the evolution of dances over time and at different countries/cultures. We demonstrate the efficiency
of our method on a number of folk, modern and other dances (taken from three different online dance libraries),
organizing motion collections and retrieving similar dances from a database. Our method can find applications
for motion indexing in virtual dance museums, and can be used for studying and analyzing the cultural and social
similarities/differences of the dance heritage in neighboring countries.

2 RELATED WORK
The related work in divided into methods for (a) motion analysis, (b) motion organization and summarization,
and (c) a review on computing methods with specific applications in dancing and intangible cultural heritage.

Motion Analysis: Keyword queries [25], or annotation [3] are cost-effective methods for motion retrieval
and context-based data organization. However, these methods require manual labelling, and cannot apprehend
the complexities and particularities of motion data. Another way to retrieve similar motion is by matching
poses [62, 66, 81] or other geometric distances [13, 20, 24, 95]. Indeed, these methods provide an intuitive means
of query specification, but cannot capture the temporal evolution, and dynamics of human motion, while they
have difficulties in handling heterogeneous and complex motions. Small temporal windows may extract the
spatiotemporal features of motion, but since similar motion segments can vary in duration and speed, we cannot
simply compare fixed-length time windows. One way to deal with some aspects of temporal evolution in motion is
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to include both geometric and dynamic features [17], to employ uniform scaling, a global stretching or shrinking
of the time series [56], or Dynamic Time Warping (DTW) to temporally synchronize motion sequences [74, 79].
However, due to the high dimensionality of human motion, these methods are very expensive in terms of
computational cost. To accelerate motion retrieval in large scale databases, Kovar and Gleicher [61] use match
webs as an index structure to find numerically similar motions, Chai and Hodgins [17] build a graph to allow
fast nearest neighbor search, while others decompose motions into body parts and use a hierarchical motion
representation (R-trees and kd-trees) [28, 56, 63, 68]. Another way to deal with time inconsistency in motion is
to employ relational [75, 82] or qualitative features [4, 54, 87]. Indeed, these features extract the dynamic and
spatiotemporal information of motion, but not the numerical similarity between poses.

Several methods deal with the high complexity and dynamic feature of motion by defining a succinct represen-
tation for motion sequences, either by applying principal component analysis (PCA) [38], by presenting motion
as Boolean values at selected keyframes [74], or by training deep autoencoders [100]. These methods, however,
can only handle short-time sequences, they cannot deal with complex and dynamic motion sequences, motions
with temporal variation in duration and speed, or motions with extreme reordering, a common characteristic of
dances (e.g., in folk dancing, dancers may perform similar pirouettes, but at different times and in arbitrary order).
On the other hand, Kapsouras and Nikolaidis [55], and later Fotiadou et al. [39], use a Bag-of-Words (BoW) model
to define motion codebooks for human action recognition or to recognize Greek folk dances among other actions,
respectively. However, they treat motion as a set of individual poses and not as a sequence, resulting in losing the
semantic information and the temporal evolution of motion. In this work, we learn a high-dimensional universal
feature space of short-time motions sequences using a deep network, in a similar way to Aristidou et al. [5], and
define motion and style signatures which are time-scale and temporal-order invariant, offering a succinct and
descriptive representation of motion sequences.

Motion Organization: One of the best ways to organize a set of elements is clustering analysis [37]. To
achieve a relying clustering, it is important to utilize an efficient distance metric that can quantitatively measure
the similarity among the elements of the collection, i.e., [40]. Ordination or neighborhood construction is
another important analysis for organizing data collection that puts similar elements near to each other, and
dissimilar farther apart [46], while it is the basis for data visualization, overview and exploration. In this direction,
Bernard et al. [15] developed MotionExplorer to cluster and display motions as a hierarchical tree structure.
The authors used the self-organizing map (SOM) on joint position features to train a topology preserving the
grid of poses. More recently, they introduced a visual-interactive approach for labeling human motion data that
represents motion as sequences of motion classes [14]. Müller et al. [73] propose to express motion as an explicit
matrix, while Chen et al. [21] used a number of low level pose features to perform data abstraction, and then
applied topological constrains to generate multiple layers of data aggregations. In contrast, we use multiple
distance measures, and similarly to Huang et al. [49], we organize our dance motion collection using a set of
quartets that set topological constrains and contribute to the design of a categorization tree; inferred semantic
information is also used to portray dances in a chronological order.

Dance and Intangible Cultural Heritage: A number of methods have been proposed for motion comparison,
indexing, retrieval and summarization that explicitly deal with dancing e.g., for modern [4, 32], and folk dance [8,
30, 80], resulting in numerous dance-oriented applications, e.g., dance synthesis, teaching, games, annotation
etc. [101]. For instance, Shiratori et al. [89] synthesize dancemovements to match givenmusic, Fukayama et al. [41]
use machine learning to generate music-driven dance movements, while Aristidou et al. [9] build, in the context
of Motion Graphs [62], an LMA-derived motion analysis framework that eliminates potentially problematic
transitions and synthesizes style-coherent dance motions. The LMA framework has also been used for dance
motion evaluation [50], as well as emotion recognition and stylization in dancing [11]. Other methods focus
on automatically evaluating dance performances compared to pre-captured samples, aiming to provide visual
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feedback to the performer in a 3D virtual environment, e.g., in martial arts [51], dance [1, 2, 18, 27, 36, 94, 96],
ballet [64], and folk dancing [7, 22, 60, 65, 67]. Other works introduce different whole-body interaction interfaces
for exploring various visualizations in dance learning and gamification [35, 70, 97]. Iris et al. [57] have recently
presented a detailed review on methods for digitization and visualization of folk dances in cultural heritage.

3 DANCE MOTION CAPTURE DATABASE
In this section, we describe how dance motion can be acquired and documented holistically using emerging
technologies, so as to enable safeguarding of intangible heritage creations. In close collaboration with dance
experts, we identify and present the metadata information that is useful for archiving, curating, presenting,
analyzing, and re-using dance motion data, aiming to expose semantic, cultural, and contextual correlations
among dances from neighboring countries. Moreover, we describe the framework for dance motion acquisition,
and the way these data and metadata information have been used to enrich DMCD.

3.1 Metadata for Dance ICH Data
Metadata is the data that provides information about other data; in other words, metadata is the documentation
that describes data. There are different types of metadata, and can be distinguished into five main categories:
descriptive, structural, administrative, reference, and statistical metadata, each one aiming to describe different
resource for purposes [48]. Descriptive metadata describes a resource for purposes such as discovery and
identification (e.g., title, abstract, author, keywords); structural metadata is about containers of data (e.g., types,
versions, relationships, other characteristics of digital materials); administrative metadata provides information to
help manage a resource (e.g, date of creation, file type, authentication, access and administration rights); reference
metadata describes the contents and quality of statistical data; and statistical metadata describes practices that
collect, process, or produce statistical data.

The best way to systematically and structurally organize data is to use and define metadata schemas as a logical
plan that shows the relationships between metadata elements [90]. Metadata main purpose is to assist users to
locate information, discover resources, and allow further studies with regard to the content, history, structure
etc. of the data, and are vital for electronic resource organization and the digital preservation of resources
and information. Information professionals, creators and users of digital content, agree that the most complete
metadata information provided enables accessibility, interoperability and preservability of cultural heritage
creations, and contributes to archiving, disseminating, studying, and reusing of cultural heritage information
objects [12].
Over the years, numerous ontological and metadata representations have been proposed to allow further

investigation, studies, and research in dance heritage, e.g., [44, 53, 58, 92, 102]. An extended research about
metadata in digital folklore collections, and the main metadata standards to represent cultural heritage collections
is given by Lourdi et al. [69]. The digitization and documentation of folk dancing consists a large variety of different
and complex data, including descriptive data, with regard to the description of the dance being performed, the
history, notations, but most importantly, the multimedia recordings. In this direction, many researchers focused
on ways to document and encode different multimedia elements of the dance creations, e.g. the MusciXML [43] to
describe and encode musical motifs in XML-based, the LabanXML [76], MovementXML [47], and more recently,
the DanceXML [31, 32], to represent, again in XML-based, the movements using Labanotation [45]. To provide
online access to digital dance creations, the OWL ontology was used to assign annotations representing movement
sequences of a dance-recording video [34], or the Multimedia Web Ontology Language (MOWL) [71], to correlate
heritage resources and multimedia data. A comprehensive report on metadata and schemas specially designed
for Intangible Cultural Heritage creations is given in [42], where all metadata schemas, and standards for 3D
virtual representations are extensively discussed.
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Fig. 2. Our folk dance database schema.

Before constructing the metadata schema, it is important to accurately define the data to be collected. Folk
dancing is a rich and diverse intangible element that requires numerous and complex data to be fully defined,
including descriptive data, with regard to the description of the dance being performed, the dancer experience and
background, and the multimedia recordings. In this direction, we have consulted folk dance professionals to assist
in defining the data and metadata information needed to holistically describe, document, and archive folk dancing,
but most importantly, to provide the basis for creating the digital dance ethnography, and thus forming the time
and space evolution of dances. For each dance creation, it is recommended to collect information about the dance,
such as textual description, the story-telling, the country/region of origin, the date that the dance first became
known, the type of the dance (e.g., solo or group), and its history. The multimedia collection includes the motion
capture data, both body and facial, the video recordings, and music (including the lyrics, composer, singer, etc.) of
individual performances. It is also important to collect data with regard to the technology used for capturing,
such as the motion capture system, and the kind of sensors used, the calibration parameters, the recording
software and the data from recording. In addition to these recordings, metadata information about the dancers
appearing in performances (e.g., name, gender, age, height, weight, nationality, countries of residence, dance
teachers, years of dance experience, dance background and years of experience in different genres), the locations
where these dances are performed, the traditional costumes, accompanied objects (e.g., swords, sticks), the 3D
environment of the digital representation, the lighting etc. All these metadata information allows to study each of
the performance parameters holistically. They also contribute in understanding the experience and background
of the dancer, and are particularly useful for further cultural, anthropological, and ethnological studies. Other
metadata information useful for processing, analysis, and management of dance data can be extracted using
fusion analysis. A set of low or medium-level multimedia features can be applied to exploit information across
different modalities, e.g., stylistic properties based on the Laban theories on kinesiology and choreography (the
Laban Movement Analysis system) [4, 23, 54], Labanotation [33, 84], or music, rhythm analysis [88, 89], while
the context and content are integrated to transform data into a level of interpretation that is understandable by
humans. In this work, we employed a relational database schema to structure the information within the archive.
Figure 2 shows our ideally database schema that structures the dance data and metadata information. Note that,
this is an ongoing project, and our dance collection will be enriched with more data and metadata information as
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Fig. 3. An animated virtual character that performs the Antikristos dance and wears the traditional Cypriot uniform, at the
Hadjigeorgakis Kornesios Mansion in the medieval town of Nicosia, Cyprus.

they become available; currently, some information is missing (e.g., facial expressions) due to the lack of software
and hardware facilities in the lab.

3.2 Dance Data Acquisition
Over the last few months, we devoted a considerable effort to enrich the existing Dance Motion Capture
Database [29] by capturing and digitizing folk dances from the wider area of the Easter Mediterranean, the
Balkans and Pontus. DMCD currently provide access to different types of content (e.g. text, audio, images, video,
3D graphics, motion capture data) from various intangible cultural heritage resources, mainly for research, studies,
and education purposes. The data has been captured using an eight cameras PhaseSpace Impulse X2 motion
capture system [78], which allows for high-frequency (up to 960Hz) optical tracking of the dance performers using
modulated LEDs. Such system is able to acquire 3D motion data, and maintain the correct human proportions and
the naturalness of the action, however our system ability is only for a single character over time. In order to ensure
that these important and valuable intangible cultural creations are sufficiently well documented, recorded and
archived, we captured male and female performers who are experienced dancers and active members of cultural
organizations and dance schools. These quality and culturally important datasets have been uploaded to DMCD,
whereas this publicly accessible online dance repository currently stores more than 180 dance performances (of
which more than 30 are folk dances), being one of the most complete digital dance libraries in the world. Note
that, some of these folk dance creations have been harvested into EUROPEANA1, the European Digital Library of
Cultural Heritage. Figure 3 shows snapshots of an animated virtual character who performs a Cypriot folk dance
from the database. To facilitate the long term maintenance of the database, and since folk dance digitization is an
evolving project, the archive has been designed in a way that is scalable and can easily accumulate new data as
they become available.
For the purpose of this work, we have created a database D of 72 dances; data has been taken from the

DMCD [29], the CMU [25] and NUS [77] motion capture databases. Our datasets comprise folk dances with
different origin, such as from Cyprus, Greece, Serbia, Egypt, and Spain. It also includes other dances, e.g., Latin
dances, Waltz, Capoeira, Ballet, Contemporary dances, etc. All dances, with their metadata, used in this work are
listed in the Appendix, Table 2. The motion capture data are in BVH (Biovision Hierarchical Data) format, they

1Europeana, EU digital platform for cultural heritage: https://www.europeana.eu/
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were originally sampled between 120 to 480 frames per second, but then downsampled to 24 frames per second
(to reduce the computational time) without much loss of the temporal information (see Forbes and Fiume [38]). It
is important to note that our data have been retargeted to a single BVH skeleton with standard body proportions,
to enable uniform processing of all the acquired motion capture data. Also, more than one capture is in general
recommended, for each dance. This is because each performer has its own dance accent that is highly related to
hir/her experiences, background, body type, age, emotion etc. No standardization or normalization of dances
should be taken into account since these dances correspond to the idiosyncracy and experience of the performer.

4 MOTION ANALYSIS
In order to organize a categorization tree for dances, we need a succinct but descriptive representation of motion
sequences. Such a representation enables similarity comparison of complex, heterogeneous, and highly dynamic
movements that are time-scale and temporal-order variable, such as the dance movements. The representation
should also apprehend the geometric, dynamic, and stylistic aspects of motion. In this paper we tackle these
challenges by utilizing motion and style signatures; the core idea is that motion sequences can be broken down to
smaller movements, and can then be characterized by the distribution of such movements. Thus, in a similar
manner to Aristidou et al. [5], we first extract a set of overlapping motion and style words from the whole motion
sequence, and then distill those words to a set of motifs, which are descriptive and frequent words. Movements are
therefore represented by their motion and style signatures which are defined by the frequency and distribution
of their motion and style words, respectively.

4.1 Geometric Motion Analysis
To construct motion signatures, we first divide motion sequences into motion words. A motion word is defined
as a narrow temporal window of all joint rotations around a given frame that represent the local evolution of
pose [6]; each joint defines three rotation values that are in the range of [0; 360] degrees. Motion words divide a
motion sequence into smaller, overlapping, feature descriptors defining a local spatiotemporal descriptor. Motion
words, in our experiments, are defined using them = 16 most informative joints with their relative joint angles.
Similarly to [5], we use 16 frames window to define motion words, that reflects to 0.66 seconds, with a skip
of 4 frames. This length proved to be long enough to cover simple movements, but short enough to promote
similarities.

To define the vocabulary of our universal motion words feature-space, we gather motion words from our dance
databaseD. Motion words are embedded into a feature space using a deep neural network. The embedding places
semantically similar motion words close together, and semantically different words far apart. Instead of computing
the distance, which is computational and time expensive, we learn the embedding using a triplet-loss network [85].
We train the network using positive examples, which are either motion words that appear temporarily close in
the training data, or words that match using dynamic time warping, and negative examples, which are random
motion words that are either temporally or postural dissimilar. The network maps all motions words of the
dataset into the d-dimensional universal feature space Rd . Note that our network creates a 736 × 1 embedding
by integrating the Inception model [93]. We use K-means clustering algorithm and group the motion words
into K (empirically, K = 100) mutually exclusive clusters2. Each cluster, is represented by a motif motion word
which is the centroid of the cluster. Thus, motion signatures are defined as a bag-of-motifs, which models the
distribution of its motion-motifs. In other words, given a motion sequence, we first extract all its motion words,
map them to the universal feature space, assign each word to its representative motif, count the number of
words in each of the K clusters, and divide by the total number of words in the motion sequence. This creates a

2Note that, for large dance databases, with highly dynamic motion sequences, we believe that a larger number of clusters might be required
(K > 200)
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comparable signature for every motion sequence regardless of its length. More details about the definition of the
embedding space, the parameters, structure and training of the triplet-loss network can be found in [5]. Two
motion sequences are considered similar if their signatures have similar characteristics, which means that they
have a similar distribution of motion motifs.

4.2 Stylistic Motion Analysis
Style plays an important role in dance motion evaluation [4]. Thus, apart from the use of motion words to define
motion signatures, as presented in [5], in this work we also introduce style words and style signatures, aiming to
appreciate the stylistic variations of movements. The stylistic representation enhances mostly a set of dynamic
features, with regard to the body, effort, shape and space components of the Laban Movement Analysis (LMA)
system, and allows finding stylistic similarities within motion sequences. Style words are one dimensional arrays
that encode a number of LMA-derived features (114 measurements ϕi , please refer to Table 1), from selected key
joints, within a short temporal-window around a given frame. Similarly to motion words, style words are local
spatiotemporal descriptors that divide motion into smaller, overlapping components. Style words are computed
in right anchored windows of 16 frames, with stride 4 frames (to be similar to our motion word definition), using
a number of high-level motion features based on the LMA principles (see Aristidou et al. [11]). The distance
between two style words is computed using the Earth Mover’s Distance (EMD) metric [83]. We position style
words into d-dimensional space using a robust Multi-Dimensional Scaling (MDS) [16] that is optimal to outliers
(we tried different dimensionalities, Rd , and the quality of embedding seems to be equally well for d ≥ 10), and
cluster the words in this space using K-means (again K = 100). Similarly to motion words, we define the centroid
of each cluster as style motif, and define style signatures as the normalized histogram of the frequency of style
words in all K clusters. Style words help us apprehend differences in effort and space (e.g., dynamics of motion),
even if movements appear similar in pose.

4.3 Computing the Relation between Dance Sequences
Our motion and style analysis is based on a Bag-of-Motifs motion representation that is invariant to the temporal-
ordering of motion and style motifs. Being oblivious to the motif’s order is important in dancing since it allows
comparing motions with similar frequencies of motifs regardless of their exact temporal location. Our motion and
style signatures allow comparing sequences of different speed and duration, enriching diversity in comparisons
and analysis. A common problem although in BoW implementation is the naive frequency counting. Highly
frequent motion and style words dominate the dataset, but may not be as informative or descriptive as some less
common motion words. To deal with this problem, we rescale the frequency of the motion and style motifs by
the frequency of the total motifs in the corpus, for each one separately. We search for the statistically significant
motion and style parts which occur regularly, and makes them unique. Those elements are both repeating, i.e.,
occur often in a motion group, and spatiotemporal discriminative, i.e., occur much more often in a specific motion
group than other motion groups. The reoccurrence of such motion words across a motion sequence induces
strong and meaningful affinities. Thus, we re-weight motion signatures using tf-idf (term frequency – inverse
document frequency [26]). The importance of a motif is proportional to its frequency in the clip and inversely
proportional to its frequency in the corpus. Figure 4 shows the motion and style signatures for two families of
three dances.

Once we have the signatures (both motion and style), we define the similarity between dance motion sequences
as the distance between those signatures. We use the Earth Mover’s Distance (EMD) [83] to compare two
signatures as they represent distributions. We have three metrics to compute the relation between dances, the
geometric that is computed using the motion signatures, the stylistic that is computed using the style signatures,
and the combination of the two aforementioned relationships. We allow users to manually tune the weight of
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Table 1. The LMA-derived feature measurements used for defining style words and style signatures, as listed in [10].

Features Measurements

f i Description f imax f imin f iσ f iµ

Body

f 1 Left foot-hip distance ϕ1 ϕ2 ϕ3 ϕ4
Right foot-hip distance ϕ5 ϕ6 ϕ7 ϕ8

f 2 Left hand-shoulder distance ϕ9 ϕ10 ϕ11 ϕ12
Right hand-shoulder distance ϕ13 ϕ14 ϕ15 ϕ16

f 3 Hands distance ϕ17 ϕ18 ϕ19 ϕ20
f 4 Left hand-head distance ϕ21 ϕ22 ϕ23 ϕ24

Right hand-head distance ϕ25 ϕ26 ϕ27 ϕ28
f 5 Hip-ground distance ϕ29 ϕ30 ϕ31 ϕ32
f 6 Hip-ground minus feet-hip ϕ33 ϕ34 ϕ35 ϕ36
f 7 Centroid-ground distance ϕ37 ϕ38 ϕ39 ϕ40
f 8 Centroid-pelvis distance ϕ41 ϕ42 ϕ43 ϕ44
f 9 Gait size ϕ45 ϕ46 ϕ47 ϕ48

Effort

f 10 Head orientation ϕ49 ϕ50 ϕ51 ϕ52
f 11 Deceleration peaks ϕ53
f 12 Pelvis velocity ϕ54 ϕ55 ϕ56
f 13 Left-hand velocity ϕ57 ϕ58 ϕ59

Right-hand velocity ϕ60 ϕ61 ϕ62
f 14 Left foot velocity ϕ63 ϕ64 ϕ65

Right foot velocity ϕ66 ϕ67 ϕ68
f 15 Pelvis acceleration ϕ69 ϕ70
f 16 Left-hand acceleration ϕ71 ϕ72

Right-hand acceleration ϕ73 ϕ74
f 17 Left foot acceleration ϕ75 ϕ76

Right foot acceleration ϕ77 ϕ78
f 18 Jerk ϕ79 ϕ80

Shape

f 19 Volume (5 joints) ϕ81 ϕ82 ϕ83 ϕ84
f 20 Volume (upper body) ϕ85 ϕ86 ϕ87 ϕ88
f 21 Volume (lower body) ϕ89 ϕ90 ϕ91 ϕ92
f 22 Volume (left side) ϕ93 ϕ94 ϕ95 ϕ96
f 23 Volume (right side) ϕ97 ϕ98 ϕ99 ϕ100
f 24 Torso height ϕ101 ϕ102 ϕ103 ϕ104
f 25 Hands level ϕ105−107

Space

f 26 Total distance ϕ108
f 27 Total area ϕ109
f 28 Total volume ϕ110
f 29 Total volume ϕ111 ϕ112 ϕ113 ϕ114
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1st and 2nd Antikristos (Cyprus)Salsa (U.S.A.)

motion signatures style signatures motion signatures style signatures

Fig. 4. Motion and style signatures for two families of dances; the first family consists two salsa dances (on the left), and the
second family two Cypriot folk dances, the 1st and 2nd Antikristos (on the right). The frequency of motion and style motifs is
illustrated by the colors (hot colors for high frequency, cold colors for low frequency). As can be seen, dances that belong to
similar families have similar distribution of motifs in their motion and style signatures.

influence of the similarity descriptors, in motion comparison, so as to tilt the sensitivity toward posture or stylistic
correlation. Recall that signatures are independent of the length of the motion sequence and can be applied to
sequences from a few seconds to several minutes. This allows to understand that two sequences belong to the
same semantic group even if they differ in length, and without requiring temporal alignment or exact matching.

It is important to note that important metadata information, such as the accompanied music, the story-telling,
etc., is not taken into consideration in the distance metric in this version of the work. As stated in section 7, our
future directions will see the enrichment of our semantic measurement metric with a larger number of metadata
information, taking into consideration audio features (e.g., the music rhythm), semiological information (e.g., the
story-telling), as well as the social, cultural, economical, and religion aspects of the dances.

5 CATEGORIZATION TREE
Given a collection of folk dances D, our target is to organize and visualize them based on their similarity. One
way to deal with is to apply dimensionality reduction [46] on their signatures or to directly cluster the collection
using a distance metric [37]. In this paper, and similarly to Huang et al. [49], we first organize dances into a
categorization tree that assesses dances on the basis of their contextual similarity, and later set parental-children
relations among dances based on their ancestry to portray the evolution of dances. The categorization tree is
defined by utilizing two different measurements, the geometric and/or stylistic relations between dances, while
the parent-child relationships are implied by imposing semantic information.

The main idea behind structuring a categorization tree is to denote any sets of four dances in the collection as
quadruplets, and then perform a series of tests on quadruplets to find a subset of quartets. A quartet is a sub-tree
that consists of four leaves, and expresses a quantitative relation among a set of nodes that can be used as a
constraint for the construction of the categorization tree. More specifically, it defines the topological constraints
between two pairs of dances so that the distance between the elements of each pair is small, but the distance to
the elements of the other pair is large. In other words, a quartert separates two pairs of dances. A set of quartets
are then used to build one global tree, where all the dances in the collection D reside at the leaves of the tree,
and the number of edges between two leaves reflects their degree of separation within the given collection.
In a similar way, Chen et al. [21] used phylogenetic tree built from quartets to summarize a motion sequence
into poses; the distances between poses were calculated using some low-level and high-level relative geometry
features. In contrast, in our work we do not look only at pose but use dances as whole sequence of motions,
whereas the distances among dances are calculated using time-scale and temporal-order measurements that take
into consideration both the geometric and stylistic features of the dance as a sequence.
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Fig. 5. (a) A fully connected graph with six edges. After removing the three edges with the largest distance, there are several
possible configurations. For instance, (b) and (c) are potential reliable quartets since d3 is a bridge connecting the two pairs,
while the (d) and (e) configurations are discarded since the removal of d3 do not separate the four vertices into two pairs.

5.1 Defining quartets
The first step towards building the categorization tree is to select appropriate and reliable quartets. To form
quartets, we compute the distance between signatures of the dances (both motion and/or style signatures), as use
it as the dis-similarity value among the dances; the clearer the topological structure of this separation is, the
more reliable the quartet is. The similarity value used in our experiments can be manually tuned to weight the
influence of each of the descriptor features and change the sensitivity toward posture or stylistic correlation. The
process of acquiring a reliable quarter is:
(1) Select any four different dances (A, B, C, D) from D. For each pair of dances in the collection, calculate the

distances between their signatures (geometric, stylistic, or combine), and construct a full 4-node connected
graph. Each node of the graph represents a dance sequence and each edge is associated with the distance
between the two connected nodes.

(2) Sort the six edges according to their distance similarity, and remove the three edges with the largest distance.
Check whether the four nodes are still connected, and if not, discard this quartet. If all nodes are connected,
let the largest edge of the three remaining edges be d3 and the other two edges be d1 and d2. Check if d3 is
a bridge, where its removal separates the four nodes into two pairs, and if not, discard this quartet; see
Figure 5.

(3) Compute the ratio between the distance values of the edges: if d3/d1 > R and d3/d2 > R, where R is a user
defined threshold, then this quartet is consider to be a reliable quartet. Thus, the topological constraints
ensure that the elements of each pair of dances which are connected by the edges d1 and d2, respectively,
are close, while the two pairs are far apart.

We used the k = 20 nearest neighbors while searching for quartet candidates. The threshold R, that is the ratio
between the value of inner to inter pair distances in a quartet, controls the number of reliable quartets. Setting a
small value for R creates a large number of quartets, at the cost of having less reliable quartets, while setting
the value of R too large, only a small number of conservative quarters pass through the reliability test, which
again reduces the overall accuracy of the tree. In this work, we adjusted the value of R = 1.4 so as to allow the
minimum number of quarters that contain all the dances in the collection.

5.2 Building the categorization tree
After obtaining a set of reliable quartets, and similarly to [49], we adopt the Quartets MaxCut algorithm (QMC) [91]
to construct the categorization tree. Every quartet defines a topological relation between two pairs of dances
that must be maintained by the categorization tree. The QMC algorithm approximates the categorization tree
(which is unrooted tree), that maximally preserves the topological constrains of the dance sequences defined by
the quartets (see Figure 6). Each quartet becomes a sub-tree and each leaf in the tree represents a dance motion.
If two leafs have the same parent node, it indicates that these two leafs are very similar to each other. If two
non-leaf nodes have the same parent node, it indicates their sub-trees are similar to each other to some degree.
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Fig. 6. Building a tree based on different quartets using the MaxCut algorithm. In each row, the input is a set of two quartets,
and the algorithm creates a tree respecting these quartets topology. More details can be found in [91]

The degree of separation of any two dances in the collection can be represented by the number of edge hops
between their corresponding leaves in the tree. Figure 14 shows the categorization tree built from our dance
motion collection.

5.3 Set the hierarchical structure
To put dances in a chronological or geographical order, apart from the distance matrix that gives the similarity
between all dances, we also need to define semantic links from metadata information to link dances hierarchically,
and establish parental-to-children or siblings relationships. The semantic links use metadata information and are
meant to assist the hierarchical structuring of the tree with regard to the similarity between the dance sequences,
the date they first appeared, and their origin. In this way, we can study or visualize the evolution of dance, and
unveil different variations of the same dance in neighboring nations and areas, or at different time periods. We
use the following metadata to establish our semantic links: (a) date/year, (b) origin, (c) male/female/mix, and (d)
solo/group. The date/years information gives the parental-to-child relation, while the gender, origin and type,
allow to refine, prune, group and/or separate the dances (e.g., brake all connections between dances performed
by actors of the opposite gender).

6 RESULTS
In this section, we provide several experiments to evaluate the performance of our motion and style analysis, and
illustrations that demonstrate the effectiveness of our method.

6.1 Implementation Details
We have implemented our system in Matlab R2018b, the Siamese network was implemented in torch, while
trees were generated in C++. All experiments, including the network training, were run on a six-core PC with
Intel i7-6850K at 3.6GHz, 32GB RAM, and with nVIDIA Titan XP GPU. We used the trained triplet network of
Aristidou et al. [5], that has been trained using a large number of motion words from various types of motion,
including dance motions. It took approximately seven hours to embed the motion words into a high dimensional

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:14 • A. Aristidou et al.

Salsa

Capoeira

Rumba
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Hasapiko
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Capoeira

Zorbas

Hasaposerviko

Hasapiko

Fig. 7. This figure demonstrates, in a circular partition, the degree of similarity of the Salsa (top) and Hasaposerviko (bottom)
dances to other dances in the collection. Similar dances to the query dance are placed closer to the center circle. The similarity
is also illustrated by different shades of green (for Salsa) and blue (for Hasaposerviko); the numbers in red indicate the degree
of dissimilarity for that partition. Refer to the supplementary video for an animated visualization of this demonstration.

feature space for our dance motion database D. For style words, it only took less than a couple of hours to create
the embedding. Clustering words (approximately 25K motion and 25K style words) into mutually common clusters
requires approximately 2 hours for each method, creating motion and style signatures, that is the distribution of
these words in a motion sequence. Motion retrieval and comparison is then achieved in real-time.

6.2 Evaluation
Figure 14 presents the categorization tree where dance motions are organized, producing reliable neighbors for
each dance motion. Its performance is demonstrated by its effectiveness in selecting reliable quartets as topological
constraints, indicating that the use of motion and style signatures can be a reliable motion representation. We
evaluate the importance of our geometric and stylistic measurements by constructing trees using only motion
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Bachata (Dominican Republic) Reggaeton (Puerto Rico) Salsa (USA)

Fig. 8. Our method finds similarities in the dance culture of neighboring countries in the Caribbean.

or style signatures as the distance metric, and conclude that using an equally weighted metric matches better
the recommendations of our associated dance professionals. More specifically, we asked our collaborators (five
dance experts) to group our dance collection (by indicating the 5-Nearest Neighbors for each dance from those
dances in our database), and compare our results with their suggestions. The accuracy of our method in finding
the 5 contextually closest dances, for a given dance, matches the suggestions made by our dance specialists by
approximately 87% (76% when using only the motion signatures, and 71% when the style signatures were used);
the accuracy increases to 90% when comparing the 3 closest dances, and 93% for the single most related dance. For
further analysis purposes, we also portray our results using some other popular clustering and ordering methods,
such as the Multi-Dimensional Scaling (MDS) [86] in Figure 11, where dances are ordered into 2 dimensional
space and similar objects are near and dissimilar are far apart, the t-Distributed Stochastic Neighbor Embedding
(t-SNE) [99] in Figure 12, and the hierarchical clustering [72] in Figure 13, that gathers similar dances into groups.

Organizing a dance collection into a tree or an embedding allows fast and intuitive exploration. In this work,
we additionally visualize the similarity of a given dance to the collection in a two-dimensional neighbor map.
The distance between the given dance and the collection is computed by equally weighting the EMD distance of
their motion and style signatures. The 2D map facilitates the exploration of the collection, placing the nearest
neighbors to the given dance closer to the center of the 2D map, and the dissimilar dances further away. Moreover,
the closer the dances are to the center of the 2D map, the shade of color is more similar to the given dance, while
as we move further from the circle center, the color fades and becomes gray. Figure 7 illustrates two examples
where the dance collection has been reordered around a given dance by their degree of similarity in circular
partitions. The top image shows the relation of the Salsa dance (green color) to the collection (similar dances are
placed closer to the given dance and colored in green shade), and the bottom image the corresponding relation of
the Hasaposerviko dance (blue color) to the collection (similarity is also highlighted in different shades of blue).
For instance, note how the Zorbas and Hasapiko dances can be found close to the input dance (Hasaposerviko),
while dances with Latin or Carribean origin (e.g., Capoeira, Salsa) are placed at the outer partition, meaning that
they have a large degree of dissimilarity to the input dance. This is also illustrated in Figures 11, 12, 13, and 14.

All of these methods give you the sense of similarity or the differences between dances, but no method offers
a visualization to semantically perceive the homogeneity of dances, their evolution in time, and their inter or
meta-influences. To illustrate the chronological and geographical evolution of dance, we use a constrained version
of the well-known Motion Graphs method [62], that allows finding transitions points at similar poses. The use of
motion and style signatures add contextual constraints, allowing to connect only dances with similar content
(their degree of dissimilarity is less than a threshold) that go beyond the body’s postural configuration. The
addition of semantic information in the process ensures that the selected transition is made with chronological
or geographical order. This is achieved by embedding a contextual assessment that prunes incoherent transitions.
In particular, we compare the postural and stylistic contents of the input and the candidate motions near the
transition frame (anchored on the transition words), by using a window of n = 12 motion and style words (that
is a 2.5 seconds of motion), and discard the transitions that have large degree of dissimilarity. For instance, to
illustrate the chronological evolution of a given dance (e.g., the Cypriot 1st Antikristos), we build a graph with
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Xin-Jiang dance (China) Belly dance (Egypt)

Fig. 9. Our method reveals some unexpected correlations, such as those between the Chinese Xin-Jiang (shown in red) and
the Egyptian Belly dance (shown in yellow); both dances have Oriental roots and influences.

all possible transitions that are contextually similar (above a predefined threshold) to the given dance, and are
initialized in a later time. This may result in numerous paths; the selection of the optimal or ideal path depends
on the case. Here, we select the longest path with the lowest mean contextual cost. Figure 1 illustrates an example
of the evolution over time in the Cypriot folk dancing, while Figure 8 shows an example of related dances with
similar geographical orientation. For an animated version, please refer to our supplementary video.

6.3 Discussion
Our method, apart from finding similar dances (both ethnically, and geographically) and placing them near each
other, can also help in revealing some interesting observations. More specifically, there are motion motifs that
appear in different types of dances and create unexpected connections; for instance, we found similarities in
the motion and style signatures of the Serbian (e.g., Kolo) and Greek folk dances (e.g., Podaraki, Rasopoulos). All
these are group dances where the performers are forming a circle, holding each other’s hands or having their
hands around each other’s waists. Another interesting association is that between the Chinese Xin-Jiang dance
(taken from the NUS [77]) and the Egyptian dance (Belly dance). The dances at the Xin-Jiang region in China
have Oriental (Middle East) influences due to some ethnic minority groups, e.g., the Turkic Uyghur people. Both
aforementioned connections are also confirmed by our associated folklore specialists. Figure 9 shows a short
sequence of the Chinese Xin-Jiang and Belly dance, where the similarities in motion between the two dances is
obvious. Please refer to the supplementary video for an animated version.

The importance of using both the motion and style signatures is demonstrated when comparing similar dances
e.g., the Tsamikos and the Syrtos sta tria, or theHasapiko and Zorbas dances. Both pairs have analogous distribution
of similar motions (the geometry of their movements), but their style (e.g., the speed) is different. Our equally
weighted metric allows to find the similarities in motion, but also highlights the differences in rhythm between
the two dances. Figure 10 shows snapshots of the Tsamikos and the Syrtos sta tria dances, and their corresponding
motion and style signatures. An animated example is given in the supplementary video.

It is important to note that the correlations found in our experiments are highly depended on the limited size
of our database. For instance, modern dance is not contextually related to Capoeira (see Figures 11, 12, 13, and 14),
but is the most similar dance to it from those in our database. As our dataset will grow and become enriched with
a larger number of dances, we believe that more observations, connections and links could be found between
dances. We look forward to algorithmically unveil more unexpected correlations and insights among the dance
cultural heritage of many neighboring countries.

7 CONCLUSIONS
In this paper we present a descriptive representation for dance motion sequences, based on the BoW principles, to
contextually analyze and organize large dance motion libraries. We use motion capture to acquire a large number
of folk, modern, and other dances. We then divide motions into short temporal descriptors, taking into account
both the dancer’s body geometry and style, creating a high-dimensionality embedding in feature space. The
descriptors are then clustered into groups based on their similarity, and their distribution along a dance sequence
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Fig. 10. The Tsamikos (shown in green) and the Syrtos sta tria (shown in blue) dances have similar distribution of motion
words but they differ in style (rhythm), as illustrated by their corresponding motion and style signatures.

defines signatures that characterize the content of that movement. Signatures offer a succinct but descriptive
representation of motion sequences, that is time-scale and temporal-order invariant. Similar dance sequences
have a similar distribution of their motion and style descriptors. We demonstrated the use of our dance motion
representation as an efficient tool for organizing dances by assembling a categorization tree, while the use of
semantic links inferred from metadata information helped in structuring dances in a chronological order.
Our work, however, has some limitations. First, only a small subset of dances has been considered, with the

structure of the organizing tree not being adequate. Forming the genealogical tree of dances is an ultimate target,
but a much more complete database is required. We look forward to enrich the DMCD with a larger number of
dances, from many different countries, aiming to put the foundations for creating the first virtual museum of
dances. The categorization tree is scalable so new dance data can be added and organized as they became available.
The DMCD should also be expanded to store other metadata information to enhance the dance collection, such
as clothes, facial painting, hair fashion etc. Having no access to the original version of the dance, as it was
performed in the past, our dance motion data may be a good approximation but differs from its original version;
unfortunately, some aspects of our ICH may be forever lost. We also aim at capturing various versions of each
dance, from multiple performers, so the performer’s personal experience and talent will be factored out of our
observations, as well as recorded as stylistic element. Second, the structuring of our categorization tree still relies
on the quality of our computational methods (i.e., our motion and style signatures), which may create conflicting
quartets. Finally, our trees are not structured taking into account the sociopolitical influences, the music, facial
expressions, or the story-telling of dances, but is based only on the geometric and stylistic characteristics. Future
work will see the introduction and evaluation of other similarity links (e.g., semiological links) that take into
consideration the social and cultural aspects of dance, the clothes, the music and/or other metadata information.
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APPENDIX

A Dance Collection
The dance motion capture collection used in our experiments consists of 72 dances from 17 different countries.
All these dances are grouped by their country of origin and listed in Table 2.

Table 2. The dance metadata information used in our experiments. Note that, the dates for some dances (e.g., the folk
dances in Greece, Cyprus and Serbia) are indicative and approximate; folk dances are in general experiential, expressing the
sociopolitical and cultural aspects of the local community, thus there is not enough data regarding the exact date they have
been initialized.

Performer’s Gender Dance Type Origin DateCountry Region
Tango Male Couple Argentina River Plate 1880’s
Tango Female Couple Argentina River Plate 1880’s
Capoeira Male Solo Brazil 16th century
Capoeira Male Solo Brazil 16th century
XinJiang Dance Female Solo China 10th century
XinJiang Dance Female Solo China 10th century
Zumba Female Solo Colombia 1990’s
Rumba Male Couple Cuba 1930’s
Rumba Male Couple Cuba 1930’s
Rumba Female Couple Cuba 1930’s
Rumba Female Couple Cuba 1930’s
Salsa Male Couple Cuba 1970’s
Salsa Male Couple Cuba 1970’s
Salsa Female Couple Cuba 1970’s
Salsa Female Couple Cuba 1970’s
1st Antikristos Male Solo Cyprus 17th century
2nd Antikristos Male Solo Cyprus 17th century
3rd Antikristos Male Solo Cyprus 17th century
Tatsia Male Solo Cyprus 17th century
Zeibekiko Male Solo Cyprus 18th century
Zeibekiko - Modern Male Solo Cyprus 20th century
Zeibekiko - Modern Female Solo Cyprus 20th century
Bachata Male Solo Dominican Rep. 1960’s
Bachata Female Solo Dominican Rep. 1960’s
Belly Dance Female Solo Egypt 5th century
Belly Dance Female Solo Egypt 5th century
Modern - Excited Female Solo E.U. 1900’s
Modern - Excited Female Solo E.U. 1900’s
Modern - Happy Female Solo E.U. 1900’s
Modern - Happy Female Solo E.U. 1900’s
Modern - Sad Female Solo E.U. 1900’s
Modern - Sad Female Solo E.U. 1900’s
Modern - Tired Female Solo E.U. 1900’s
Modern - Tired Female Solo E.U. 1900’s
Ballet Female Solo France 19th century
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Ballet Female Solo France 19th century
Waltz Male Couple Germany 16th century
Waltz Female Couple Germany 16th century
Waltz Female Couple Germany 16th century
Dimitroula Female Group Greece Macedonia 15th century
Haniotikos Female Group Greece Crete 10th century
Hasapiko Female Group Greece Thrace 12th century
Hasaposerviko Male Group Greece Thrace 15th century
Laziotikos Female Group Greece Crete 15th century
Maleviziotikos Male Group Greece Crete 15th century
Maleviziotikos Female Group Greece Crete 15th century
Outsai Female Group Greece Pontus 10th century
Pentozali Male Group Greece Crete 19th century
Podaraki Female Group Greece Pontus 10th century
Poustseno Male Group Greece Macedonia 18th century
Rasopoulos Female Group Greece Pontus 10th century
Roditikos Female Group Greece Rhodes 10th century
Syrtos sta tria Male Group Greece Epirus 5th century
Tsamiko Male Group Greece Epirus 18th century
Zonaradiko Male Group Greece Thrace 12th century
Zaloggo Male Group Greece Epirus 19th century
Zeibekiko - Modern Male Solo Greece 20th century
Zeibekiko - Modern Male Solo Greece 20th century
Zeibekiko - Fast Male Solo Greece 20th century
Zorbas Female Group Greece 1960’s
Bollywood Female Solo India 1950’s
Bollywood Female Solo India 1950’s
Bollywood Female Solo India 1950’s
Bollywood Female Solo India 1950’s
Reggaeton Female Solo Puerto Rico 1990’s
Reggaeton Female Solo Puerto Rico 1990’s
Kolo Female Group Serbia 18th century
Pastirske Female Group Serbia 18th century
Flamenco Female Couple Spain Andalusia 18th century
Hip-Hop Female Solo U.S.A 1970’s
Salsa Male Solo U.S.A. New York 1970’s
Salsa Female Solo U.S.A. New York 1970’s

B Comparison with other methods
We have compared our Categorization Tree (Figure 14) with other clustering and ordering methods, such as the 2D
embedding from the Multidimensionality Scaling (Figure 11), the t-Distributed Stochastic Neighbor Embedding
(Figure 12) methods, and the dendrogram of the Agglomerative hierarchical clustering (Figure 13). Please zoom
in the electronic version to see details.
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Fig. 11. 2D embedding of our dance motion collection using MDS.

Fig. 12. 2D embedding of our dance motion collection using t-SNE.
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Fig. 13. Agglomerative hierarchical clustering and its dendrogram visualization. The ruler at the top of the dendrogram
shows the distance between the dances.
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Fig. 14. The Categorization Tree computed using [49].
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